
1 Pattern Formation

The last two examples of spatially distributed oscillators serve as a good intro to one of
the most important aspects in complex systems: pattern formation. By pattern formation
we mean that certain systems have the ability to self-organize into spatially structured
states from intitially unstructured or spatially homogenous states. This behavior takes
place all over the place, in physics in chemistry in biology in social science etc. Here we
will discuss the basic ingredient that are necessary for these processes to occur. One of
the patterns that we see in any desert or any beach are ripples in the sand:

One can understand the basic ingredients for pattern formation in this system. Laminar
flows of wind move accross the sand and move individual sand grains with it. Slight
pertubations in the surface have a higher likelihood of collecting these grains increasing
the magnitude of the pertubation and thus increasing the likelihood of catching more
sand. This is a positive feedback effect which is necessary in almost all pattern forming
systems. This example also shows that one needs to put energy into pattern forming
systems, in this case wind. Right behind the pertubation a dip forms, as the probability
of grains collecting there becomes lower. Of course the increasing hills cannot increase
forever and will be eroded at the top. This is the negative feedback that is also required
in pattern formation.
The same thing happens when river beds are formed. There’s a continuous precipi-

tation that falls onto the land and the water streams it forms follows gravity downhill.
Small streams carve a path and the following water will preferentially follow those paths,
too digging deeper into the soil. Of course this can’t go on foverever. The process can
produce valleys that collapse and new valleys will form:
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Let’s discuss a few examples that all show these type of ingredient.

1.1 Examples of pattern forming in nature

1.1.1 Physics

The most known example of spontaneous pattern formation in physics is probably Benard
convection. This happens when a liquid is heated from below at such a high rate that
the heat cannot dissipate through the system fast enough. In this case convetion rolls
or cells emerge that transport the heat to the cooler regions of the liquid where heat is
given off. The cooled liquid then gets pushed to the bottom to be reheated:

This experiment can be easily done by heating oil on the stove and adding metal dust
to the oil. Again we have to add energy to the system and once certain parts of the
liquid start moving upwards this process will be accelerated and other regions have to
move downward to keep the liquid in place. Images of the suns surface show granules
which are exactly these kind of convetion pockets.

1.1.2 Chemistry

There’s an abundance of chemical reactions that, if they occur in a not-well-stirred sce-
nario, have the potential of generating patterns. One such reaction, the most famous
one, is the Belousov–Zhabotinsky reaction. This reaction uses essentially five reactions,

in which particular chemicals in it start oscillating in their concentration. If the reac-
tion takes place in a petri dish, spiral and target wave form. This is because in its essence
this reaction is an activator inhibitor system in which an autocatalytic reaction increases
the abundance of a chemical which in turn increases the abundance of a chemical that
turns this reaction off. Here’s a snapshot of a pattern that the BZ reaction can generate:
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This looks very similar to the patterns we generated with the spatially distributed
pulse-coupled oscillators. And in fact the mechanisms in both systems are very similar.
We will come back to this later.

1.1.3 Biology

Biology is full of pattern forming systems, so we are going to look at numerous examples.

1.1.3.1 cAMP signaling in Dictyostelium discoideum

Dictyostelium discoideum is an interesting organism. It’s a single cell amoeba that, when
nutrient run low excretes a signalling molecule called cAMP which other individuals in
the neighborhood respond to in two ways. 1.) they move up the gradient towards the
source, getting closer to the orignator of the signal and, 2.) the start excreting cAMP,
too. This is positive feedback. Eventually this leads to the aggregation of thousands of
these organisms into a multicellualr organism, a slug like creature that crawls away and
develops into a differentiated mold that forms a fruiting body and a stem, spores that
get carried away by wind. If one measures the concentration of cAMP one sees spiral
waves, just like in the BZ reaction and the pulse coupled oscillators:

1.1.3.2 Orientation Maps in the visual cortex of primates

An interesting pattern is seen on the visual cortex of primates and other higher mammals
that have binocular vision. In the visual cortex signals that come in from the receptors
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in the eyes are processed. It turns out that the visual cortex has a bunch of cells that
respond best to stimuli of a particular orientation, for instance contrast contours that are
horizontal or vertical etc. If one records response strengths from neurons in the visual
cortex one can color code the locations in the visual cortex according to the prefered
stimulus orientation and this is what one gets:

We see a pattern that is reminiscent of the pinwheel pattern we saw in the phase
coupled oscillator lattice. We see singularties, the pinwheels where all orientation meet.
The cool part about thes visual maps is that animals aren’t born with them. These maps
develop after birth and in response to visual stimuli.

1.1.3.3 Patterns on sea shell

Here’s a picture of natural patterns of different snail shells. These shells grow slowly
over time by continuous deposits of material and the distribution of types of material
and interactions between regions in the organism that make the hard material generate
different patterns. This is an example of a growth process that yields complex patterns.
Something we will come back to.

This is an interesting example because not only the patterns on the shels are interesting
but the patterns of the shells themselves which appear to be following some very basic
formation rules. In fact, a whole book was written by one of the pioneers of pattern
formation in developmental biology: Hans Meinhardt. He developed a model for pattern
formation which we will discuss in detail.
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1.1.3.4 Patterns in animal fur

And of course, when we think of patterns in organism we have to mention animal fur:

This picture shows different types of animal fur. Some patterns are spotty, some consist
of stripes of different wavelength. It turns out that will very few dynamic ingredient one
can devise a model that is capable of generating all these patterns at different parameter
values.

1.1.3.5 Biological Morphogenesis

The above pattern in animals are a special case of something a lot more fundamental.
The problem of how multicelluar organisms with a great diversity of function and cell
morphology can develop from a single, homogeneous fertilized egg. First, all cells in a
multicellular organism have the same genome despite the variety in shape and function.
This can be the case because these cells differ in what genes are expressed, i.e. active or
repressed, i.e. inactive. On the way towards an adult organsism, cells differentiate by a
sequential switching off an on of genes. This mechanism is responsible for spontaneouly
introducing differences in embryos. For example in the drosophila melanogaster (fruitfly)
embryo, different genes are expressed in different regions. The combination of expression
levels introduces different cell fates for the cells in specific locations which eventually
governs the development of a full blown fly:
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This process is very autonomous. If one disturbs gene expression in certain locations
one can generate interesting effects, for instance a fruit fly that has a full functioing
middle segment with additional wings:

Or mice with additional digits:

1.1.3.6 Growth of bacterial colonies

Here’s another interesting example of a growing colony of the bacterium bacillus subtilis
in a petri dish of nutrients. The control parameters are the physical properties of the
agar in which the bacteria can move around and the concentration of nutrients. As a
function of motility and nutrient concentration different growth patterns emerge. We will
discuss these types of patterns later when we talk about diffusion limited aggregation
and growth processes:
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1.1.4 Alan Turing

The guy who first thought and published about the origins of spontaneous pattern for-
mation was Alan Turing, who published a seminal paper called “The chemical basis of
morphogenesis”. In this paper, published only shortly before his death, Turing argued
that an abundance of patterns observed in nature, many of the ones mentioned above,
can be generated by the interaction of three different ingredients.

1. Activation

2. Inhibition

3. Diffusion

The basic idea being that essentially two types of agents (e.g. molecules, animals or
other dynamical quantities) interact. An activator that does autocatalysis, which means
this activator generates more of itself. Also, the activator triggers the generation of an
inhibitor. The action of the inhibitor decreases the abundance of the activator. We have
seen examples of such dynamical systems. The clue is that both, activator and inhibitor
can move in space diffusively. So imagine you have a small concentration of an activator
that subsequently generates more of itself and diffuses which may trigger a travelling wave
of activation. However, the inhibitor is also generated and if that inhibitor diffuses faster
it will eventually stop the activator. Activator can diffuse beyond the wall of inhibitor
and generate a new activator nucleation and the process repeats causing a systems of
stripes or rings to emerge. We will discuss how generic this process is by looking at
numerous representative examples.

1.2 Transient and stable patterns

We’ve seen a couple of examples of patterns so far. It’s reasonable to make the distinction
between transient patterns that come and go, and those that stabilize. For instance, in
one if we have a pattern that can be described by a fisher equation

∂tu = λu(1− u) +D∂2xu
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then for the appropriate initial condition we can observe a propagating wave that will
spread throughout the entire system.

This is an example of a transient pattern.

In one of the homework assignments we looked at a system in which the activity at a
location was increased by the activity in a smaller radius and decreased by the activity
of element in a larger radius. This local excitation and long range inhibition was able to
produce stable stripelike patterns.

In that assignment, though, this mechanism was imposed and we need non-local in-
teractions. In many physical systems, e.g. when particles can only move, e.g. diffuse,
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this non-local interaction doesn’t work. A question is now whether diffusion mechanism
can effectively yield this type of local excitation and long range inhibition. Intuitively
we would expect that this isn’t possible because diffusion usually enhances homogeneous
patterns, i.e. distributions which are initially non-homogeneous go to a more homoge-
neous state. E.g. in the picture below, we’ve got diffusive particles of two types intitally
separated spatially and when they diffuse they mix, yielding a homogeneous distribution.

1.2.1 Ad-hoc stable patterns

Let’s try to construct a system that can potentially generate spatial patterns. Let’s look
at a dynamical system

u̇ = u− u3

this is a dynamical system that has three fixedpoints, the unstable fixed point u = 0
and stable fixed points at u = ±1. Let’s be experimental and look at this system, but
spatially extended.

∂tu = u− u3 + ∂2xu.

This is what this system generates:

A nice pattern of regions that are either black or white (u = ±1 ). However, this is
not such a surprise because the local dynamics already has two stable solutions and the
diffusion only amplifies the initial condition. In fact these patterns change continuously
and will eventually go into a homogeneous state. More importantly, the question is
whether diffusion can introduce the emergence of a pattern in a system which otherwise
would be homogeneous.
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1.3 The Turing mechanism

It turns out that diffusion can also generate pattern in a system that without diffusion
would be going to a stable homogeneous state. The idea is the following. Essentially
many systems consist of an activator and an inhibitor. Let’s for instance look at

∂tu = u2w − u
∂tw = β − u2w

In this dynamical system u is an autocatalytic chemical that is activated by itself and ω
and degrades spontaneously. When it increases it inhibits w by removing it. This system
has a stationary solution

u? = β and w? = 1/β.

Let’s see if this state is stable we need to compute the Jakobian

A =

(
fu fv
gu gv

)∣∣∣∣∣
u?,v?

=

(
1 β2

−2 −β2

)

And remember that this is stable if the trace of A is negative and the determinant is
positive

1− β2 < 0 and β2 > 0

This means, the systems stationary state is stable if β > 1. Now let’s imageing that

u = u(x, t) and v = v(x, t)

and that both chemicals can also diffuse with different diffusion coeffients. In this case

∂tu = u2w − u+Du∂
2
xu

∂tw = β − u2w +Dw∂xw.

Now if we distribute the chemicals uniformly then the partial derivatives with respect to
the spatial coordinate vanish and the system behaves like the local system. The question
is, what happens to slight pertubations from the stationary state.
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. Do they get amplified or are they damped down. Let’s see what can happen in the
above system when we simulate it. We pick the parameters β = 1.5 and Dw/Du = 4.
What we see if we solve the above system numerically is that everything moves to the
globally homogeneous state. However if we increase the diffusion of the inhibitorDw = 16
the homogeneous state beomes unstable and a pattern consisting of spots or stripes
emerges.

This is a general effect: If the diffusion of inhibition happens a lot faster than that of
the activator, the system undergoes a Turing instability and patterns emerge which are
called turing patterns. The come in different flavors some of which we will discuss soon.
How can we understand this?
It turns out that with a little math we can and we can in fact derive a set of 4 equations

that can tell us for what parameters a Touring instability will occur.

1.3.1 Another Example

Let’s look at the following system

∂tu =
u2

w
− µu+ ρ+ ∂2xu

∂tw = u2 − λw + σ∂2xw

Here u is again an autocatalytic quantity that increases by positive self-coupling. However
it also generates w which if it increases decreases the autocatalytic mechanism. Thus w
is the inhibitor. Again the local system has one stable fixed point which is where the
nullclines

w =
u2

µu− ρ
and

w =
1

λ
u2

meet.
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The fixed point is given by

u? =
ρ+ λ

µ
and w? =

(ρ+ λ)2

λµ2

We also observe in this sytem that when

σ < σc

then the sytem goes into a homogeneous state, but when σ > σc a Turing instability
occurs and spots form.

If we modify this dynamical system a little bit by replacing

u2 → u2

1 + κu2

which means that the autocalytic process saturates and effect introduced by the new
parameter κ the system is able to produce a variety of patters out of the turing instability.
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1.3.2 Conditions for a Touring instability.

We can play with these system and will always find that if the inhibitor diffuses faster
a turing instability will occur. But it’s of course also important to know when. So let’s
see how far we can get by looking all systems of the form

∂tu = f(u,w) +Du∂
2
xu

∂tw = g(u,w) +Dw∂
2
xu

which we can also write as

∂tu = f(u,w) + ∂2xu

∂tw = g(u,w) + σ∂2xu

Now we assume one stable fixed point of the spatially homogeneous system:

f(u?, w?) = g(u?, w?) = 0

We have to compute the Jakobian

A =

(
fu fv
gu gv

)∣∣∣∣∣
u?,v?

and the fixed point is stable if

s = TrA < 0 ∆ = detA > 0

which meanst that
fu + gv < 0

and
fugv − fvgu > 0

These are two conditions on the dynamical system for stability. Now look at spatial
system in the vicinity of uniform solution, meaning that we perturb the system with a
spatial pertubation:

u(x, t) = u? + δu(x, t)

w(x, t) = w? + δw(x, t)
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Let’s pack the two variables into a vector

U = (δu, δw)

Then this vector evolves according to

∂tU = AU +D∂2xU

with a matrix

D =

(
1 0
0 σ

)
The question is what happens to the pertubation U, is it going to grow or vanish. Let’s
make the following ansatz for a solution

U(x, t) = U0e
λt cos(kx)

If this is a solution to the equation and if Reλ > 0 this solution will grow expontieally
and the pertubation is unstable. If on the other hand Reλ < 0 the pertubation will go
away. We are looking at a pertubation that’s a cosine wave with wavelength 2π/k. We
are doing this so we can see if the behavior of pertubations depends on the nature of the
pertubation. Plugging this into the above equation we get

λU =
[
A−Dk2

]
U

so we need to solve this eigenvalue problem and determine the sign of the eigenvalues.
We have to understand the eigenvalues of the matrix B = A−Dk2. which is given by(

fu − k2 fv
gu gv − σk2

)
= B

We know that the nature of the eigenvalues are determined by the trace and determinant
of the matrix B so the trace is given by

(fu + gv)− k2(1 + σ) = TrB
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and the determinant by (
k2 − fu

) (
σk2 − gv

)
− fvgu = detB

σk4 − (gv + σfu)k2 + fugv − fvgu = detB
σk4 − (gv + σfu)k2 + detA = detB

The steady state is unstable either if

TrB > 0

or if
detB < 0

The trace, however is always negative, because TrA = fu + gv < 0. So we have to find
conditions when the determinant becomes negative. Since detA > 0 the only way for
the determinant to become negative is:

gv + σfu > 0

If, for example
gv < 0

at the fixed point then fu > 0 then the requirement is

σ > 1

which means the inhibitor needs to diffuse faster. Let’s set

p = (gv + σfu) > 0

q = detA > 0

and k2 = z. Then we can write the above equation as

σz2 − pz + q = h(z)

and see what it can look like. We have to see where this guy becomes negative. The
function is a parabola that has an offset q and a minimum at

hmin =
p

2σ
=
gv + σfu

2σ

and it looks like this:
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If we change the parameters we can make this parabola become negativ at a certain
value zc = k2c which means that pertubation with this wavelength become unstable. The
condition for this happening is when h(z) = 0 and this happens when

p2/q > σ

or
(gv + σfu)2

4(fugv − fvgu)
> σ

which we can write has
(gv + σfu)2 > 4σ(fugv − fvgu)

1.3.2.1 In summary

So that means we have a bunch of conditions:

fu + gv < 0

fugv − fvgu > 0

gv + σfu > 0

(gv + σfu)2 − 4σ(fugv − fvgu) > 0

If these conditions are met, then the homogeneous state is unstable and patterns emerge.

1.3.3 Example

Let’s look at our example

∂tu = u2w − u+ ∂2xu

∂tw = β − u2w + σ∂2xw

We have

A =

(
2uw − 1 u2

−2uw −u2

)
=

(
1 β2

−2 −β2

)
and

fu + gv = 2uw − 1− u2

= 1− β2

so the first condition implies β > 1. The determinant is always positive.

∆ = −β2 + 2β2 = β2 > 0
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The third condition reads
σ > β2

and finally the fourth condition is(
σ − β2

)2
> 4σβ2

Or
σ > b2

(
3 + 2

√
2
)
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