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1.1 What are networks?

Intuitively the networks that we encounter share the features that individual
elements of the whole system are coupled by links that form a complicated
system of interactions that determine the entire structure or the dynamics that
the structure produces. However two basic questions are not addressed:

1. What systems can be modelled by networks?

2. What are interesting networks?

If we think about it, almost all systems in nature can be considered as parts
that interact by reciprocal forces, so why not model everything as a network?
An example from astrophysics can illustrate why the network approach may
not necessarily be the right approach for certain systems and should be re-
served for those for which it is suitable. Consider a system as illustrated in
Fig. 1.1. The figure shows a globular cluster of a couple of thousand stars. All
these stars can be considered elements that interact by gravitational force. If
we label the stars i then the interaction force between pairs at a given point in
time is given the force of gravity

Fi j =G
Mi M j

|xi −x j |2
(1.1)

where G = 6.67×10−11m3/kgs2 is the graviational constant, Mi and M j are the
masses of stars i and j , and xi and x j are their positions. So why not consider

7



Contents

this a network of nodes i with connections of strength Fi j ? Why not investi-
gate a system such as this one with network theory? In physics this system is
called a many body problem and it seems strange that these systems aren’t the
prime example for systems suitable for network science. The reason for this
can be understood by looking at the network systems from another perspec-
tive: Networks are systems in which certain connections are missing. In fact,
most of the most interesting things about networks emerge because from a set
of potential connections some are missing or some are much weaker in effect
than others and can be neglected. The important ingredient in networks is
that only a subset of potential links are realized.

Let’s assume we have a system of N interacting units and let’s assume we can
measure their interaction strength Ai j . Now we make a histogram of these in-
teraction strengths. Let’s assume we find a scenario as depicted in Fig.1.2a :
The Ai j are distributed over some interval. It’s difficult to distinguish between
interaction types and draw a line that could help us distinguish between them
and potentially neglect a subset of interactions. This scenario is typically seen
in the globular cluster system or other many body systems. There are other
systems though that might exhibit distributions of interactions that look more
like those depicted in Fig. 1.2b and c. In b, the distributions of interactions has
two peaks, one centered around zero and the other at some typical value. In
a system of this type the structure of interactions would suggest that we could
model the system by either setting interactions to “existing” or “not existing”.
If we were to draw a picture of the system we would draw a network. A similar
situation is encountered in Fig. 1.2c. The difference to b is that the interactions
not centered at zero have a broad distribution so that we may ignore the in-
teractions around zero. However, the range of values for those that are in the
right half of the distribution still must be considered. In this case we would
model this by a weighted network.

Many systems encountered in network science never really need to be ad-
dressed this way because in many systems there is either a link between nodes
or there is not, computers are either connected or they are not, facebook users
are either friends or they are not, phonecalls are exchanged or they are not.
Yet, it’s important to keep in mind what certain networks mean, in particular
in relation to social networks and operational definitions of networks.
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Figure 1.1: A globular cluster of stars is a typical example of a many body sys-
tem, not a network system.

Figure 1.2: Distributions of interactions in many body systems. a) interac-
tions range over a wide range b) basically two different interaction
strengths exist, one fraction centeredaround A ≈ 0 the other frac-
tion centered around a typical value (dashed line) and c) a peak
around A ≈ 0 remains, followed by a gap and the nonzero fraction
is distributed broadly.
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In quantitative science, quantities must be defined operationally: they are
defined by the experiment that quantifies them. Let’s assume we would like to
measure a social tie between dolphins (this is actually being done in research)
by measuring how close they approach each other. We define a distance d and
if a pair of dophins approach each other below that distance for a minimum of
number N of times each day we say they have a tie. This generates a network
of social ties in a swarm of dolphins.

This network definition depends on the parameters d and N . The network
approach is only viable in this system if whatever conclusions we draw are
robust agains small changes in these parameters. This is to be expected if for
the interactions we measure something as illustrated in Fig. 1.2b and c, but it is
doubtfull that this would be the case if interaction strengths were distributed
according to Fig. 1.2a. Bottom line:

• Networks have nodes and links

• Interesting networks are those in which potential links are missing

• Always think about how a network is defined and whether the network
approach is the most suitable one for your system.

1.2 Notation and graph theoretic origin

Our view of networks is that we’ve got nodes that are connected by links. Math-
ematicians call networks graphs because one can draw them. In graphing the-
ory a graph G is a collection of nodes V and links E , i.e.

G =G (V ,E).

The reason why the set of nodes is called V is because nodes are called vertices
by mathematicians and links are called edges. We will not use this notation,
since our focus is on real networks. Also the term edge is confusing. Here’s a
table of typical expressions often used in place of nodes and links:
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label label field

node link network science
vertex edge mathematics
actor tie social science
site bond physics

We will use the terms nodes and links throughout the class.

1.2.1 How to draw networks

A key aspect of networks is that you can gain insight about their structure by
drawing them onto a piece of paper but how to draw them doesn’t matter.
All that counts is their connectivity structure. There’s one exception: spatial
networks which we will discuss in detail later. In spatial networks each node
as a location in a space, most frequently in a two-dimensional space.

1.2.2 The orgin of graph theory - The Königsberg problem

The best way to see the value in abstracting in this way is by looking at the
Königsbergproblem. Königsberg is a city in Prussia, formerly in Germany and
now part of Russia. A river runs through it and 7 bridges cross to an island in
the middle as illustrated in Fig. 1.3. A problem posed a number of centuries
ago was:

• Is it possible to cross all the bridges in any arbitrary sequence with cross-
ing each bridge once.

Euler solved this problem by using network (or rather graph theory), realiz-
ing that only the topological situation counts. We drew a picture as shown in
Fig. 1.3b. Each node represents a piece of land and the links represent bridges.
Euler realized that if you cross each bridge exactly once in a given path there
are basically two possibilities:

1. The path starts on one node i and ends at the same node i in which case
the number of bridges connecting to that node must be even. Likewise
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Figure 1.3: The Königsberg seven bridges problem.

for all other nodes because for every path that goes to a node one must
be leaving.

2. If we have a path that starts at node i and ends at node j those two nodes
can have an odd number of connections, but all the other nodes must
have an even number of connections.

If we look at the graph closely, we see that the number of connections to each
node is odd and therefore not path exists in which each bridge is crossed ex-
actly once.

1.2.3 Network flavors

Generally networks come in different flavors that share the common feature
of having a set of nodes and a set of links. The simplest networks are...

... homogeneous undirected networks
In these networks links have no direction and no weight attached to them. A
pair of nodes either is connected by a link or it isn’t. Most of the networks that
we will be discussing in this course are this type. If we have an undirected
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network with N nodes without any self-loops (links that connect a node to
itself), the maximum number of links is

Lu = N (N −1)

2
.

These networks are used in situations where it is meaningless to assign a di-
rection to links. If for instance the nodes are people and a link denotes if two
people have exchanged a hand-shake. These networks are also called sym-
metric because of the symmetry in links.

Directed networks
These are a bit more complicated. The links have a direction, so if there’s a link
i → j that does not imply that there’s a link j → i . i might be connected to j
but not vice versa. The maximum number of links in such a network is

Ld = N (N −1).

Directed network are generally encountered if the direction of a link contains
important information. For instance, if a link informs if person i has given per-
son j a call. We may expect an assymmetric situation. Foodwebs are another
example of a network that is typically understood to be connected.

Symmetric directed networks
Sometimes we are dealing with situations where we need to model a real net-
work as a directed network, which means there are connections going in both
directions for a given node, but if a link goes from i to j it implies a link also
goes from j to i . This sounds a little like homogeneous undirected networks.
But it’s actually slightly different as we will see soon.

Weighted networks
Weighted networks are very useful when the strength of connections plays a
key role. in this case we assign a number wi j to a node j to node i . Of course
we can have directed or undirected weighted networks. Weighted networks
often play a role in traffic networks where the weight quantifies the amount
of traffic between nodes, but also in neural networks in which the weight can
quantifiy the synaptic strength between neuron. In foodwebs it can quantify
the amount of carbon exchanged between two species.
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Figure 1.4: Types of networks. A: undirected network, B: Directed Network, C:
Weighted (undirected) Network, D: Hypergraph.

Hypergraphs and bipartite networks
Hypergraphs are a little different than the above. In hypergraphs more than 2
nodes can be connected or linked. Hypergraphs can be mapped on something
that looks like a regular network, called a bi-partite network: we make an array
of the original nodes i of the hypergraph and an additional row of new nodes
that symbolize the links k. Both types of nodes, the original nodes and their
linkages, can be connected in a bi-partite graph. This is illustrated in Fig. 1.4.
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1.2.4 Trees and acyclic networks

A general feature of networks is that they may contain loops. A loop is a se-
quence of links that originate at some node i and terminate at the same node.
Loops are also called cycles. The simplest loop is a self-loop, connecting a
node to itself. If we have a node without self-loops we may nevertheless have
loops. For instance triangles i → j → k → i if links exist between each pair in
this sequence of nodes. If an undirected network has no loops, the network is
called a

Tree
Trees are very interesting and useful. Often they are used as approximations to
more complex networks. If all the nodes are part of a tree, the entire network is
a tree. If there are multiple trees the network is called a forrest. An interesting
feature of trees is that they’ve got

LT = (N −1)

links, if N is the number of nodes. This is best understood if we draw a tree in a
convenient layered way, by picking a leaf node (Nodes that only have one con-
nection in a tree are called leaves) at the top, it’s children below, the grand chil-
dren below that, etc until every node is drawn. Each layer contains as many
links connecting to the layer above as nodes drawn below, except for the root
node which doesn’t have a parent.

Acyclic network
In directed networks the situation is more complicated. It’s more difficult to
see that a network does not contain cycles. If it doesn’t it’s called an acyclic
network (it’s not necessarily a tree). Here’s the way you can determine whether
a network is acyclic.

1. find a node that contains only outgoing links

2. remove the node and all it’s connecting nodes

3. go back to step 1.) if you can continue to remove all nodes this way, the
network is acyclic.
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Figure 1.5: A tree is an undirected network without loops. A: an arbitrary way
of drawing the tree. B: a multitier way of drawing the same tree,
rooted at a chosen node. This way we see that a tree has exactly
(N −1) links.

Figure 1.6: Acylcic directed network. This network contains no loops.
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1.3 Network representations

It’s clear that one way of representing networks is by drawing them. But how
can we represent them algebraically? Let’s discuss simple undirected networks
first.

1.3.1 The adjacency matrix

The most common way of representing a network of N nodes by an N × N
matrix, known as the adjacency matrix A whose elements of which are defined
as

Ai j =
{

1 if nodes i and j are connected

0 otherwise

This matrix is very simple, having only a bunch of zeros and ones. Note that
according to the definition we always have Ai j = A j i i.e. the ajacency matrix
contains roughly twice as much information as is required for an undirected
network. Each link in an undirected network generates two 1 entries in the
matrix (except the self loops).

1.3.1.1 Directed networks

Here we define the adjacency matrix as

Ai j =
{

1 if node j connects to i

0 otherwise

Here we see a difference between symmetric directed and undirected net-
works. In symmetric directed we have Ai j = A j i but each of these counts as
one link.
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1.3.1.2 Weighted Networks

Weighted networks contain more information on the links, namely the weights
wi j . So we can just identify a weighted adjenceny matrix according to

Wi j =
{

wi j if node j connects to i

0 otherwise

Since it doesn’t matter which way we label nodes in a network and which way
we draw them, it also means that a given network has many adjacency ma-
trices that represent it. Given a matrix A we can form another matrix A′ by
swapping rows and column of A that describes the network as well. For in-
stance the matrices

0 0 1 0 0
0 1 1 0 0
0 0 0 0 1
0 0 1 0 1
0 0 0 0 1

 and


0 0 0 1 0
0 1 0 1 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 1


describe the same directed network depicted in Fig. 1.7

1.3.2 Link tables

The adjacency matrix is not the only way to represent the matrix. Just looking
at one, we see that it may be the most intuitive way to represent a network but
certainly not the most efficient and the most useful for certain tasks. Imag-
ing you would like to represent the network of facebook this way. Facebook
has about 5×108 nodes, so the adjancency matrix of connections in facebook
would have about 25× 1016 elements most of which are 0. Let’s assume we
were to put this into a computer memory, and we need one bit for each matrix
element, we’d need 25 Petabyte to store the information. But, we’d store many
zeros. Alernatively we could represent the same information in a link table,
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Figure 1.7: Example network.

that just codes up the links in pairs (i , j ). So for instance a table

L =



1 3
2 2
2 3
3 5
4 3
4 5
5 5


encodes the same information as the adjacency matrix given above, it says a
link exists between nodes 1 and 3, 2 and 2, etc. Instead of a 5×5 matrix with
25 elements we have a 2×7 matrix. Clearly this is a good way of doing things
if the number of links a node has is typically much smaller than the number
of possible links. If for instance we take the facebook example assuming that
each user has about 100 connections. So the matrix L in that case has 2×100×
25× 108 = 5× 1011 entries. Assuming we need 2 bytes per entry that is 1012

bytes which is 1 terabyte which fits on a $50 harddrive.
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Weighted networks
In weighted networks we need an additional column in L that keeps track of
the weight of a link, for instance:

L =



1 3 0.1
2 2 1.2
2 3 3.2
3 5 0.5
4 3 0.2
4 5 9.1
5 5 1.2


or W =


0 0 0.1 0 0
0 1.2 3.2 0 0
0 0 0 0 0.5
0 0 0.2 0 9.1
0 0 0 0 1.2



1.3.3 Linked lists

Another interesting way to represent a network is by a linked list. Each element
in the list contains an array of other elements. In a way, this is the most natural
way to represent a network and for some computations it’s very useful. The
above network is represented like this:

1 : {3}

2 : {2,3}

3 : {5}

4 : {3,5}

5 : {5}

It’s very intuitive to read this, node one is connected to node 3, node 2 to 2 and
3, etc. It is memory efficient and very useful if the task is to search through a
network or run dynamic processes like an epidemic.
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Weighted networks
If we have a weighted network then for each link list we need to keep track of
the corresponding weights and thus have two lists:

1 : {3}, [0.1]

2 : {2,3}, [1.2,3.2]

3 : {5}, [0.5]

4 : {3,5}, [0.2,9.1]

5 : {5}, [1.2]

Note that for each row, {·} denotes a reference to another node, whereas [·]
holds actual values and not references.

1.4 Node degree

The simplest yet most frequently measure used to characterize a node is its
degree, the number of connections it has to other nodes. Let’s consider undi-
rected networks first. The degree of node i can be easily compute from the
adjacency matrix A:

ki =
∑

j
A j i

If we sum over all degrees ki we count all the links twice because all links have
two ends ∑

i
ki =

∑
i j

Ai j = 2L (1.2)

where L is the number of links in the network. Thus, if we want to compute
the average node degree of the entire network it’s given by

〈k〉 = 1

N

∑
i

ki = 2L

N
,

which is twice the number of links devided by the number of nodes, which is
intuitive.
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1.4.1 Density of a network

This is also often used for defining the density of a network which is the ra-
tio of links L and the maximum number of links which is N (N − 1)/2 (in an
undirected network), so

ρ = 2L

N (N −1)
= 〈k〉

N −1
≈ 〈k〉

N

the mean degree per node or the fraction of links a node has on average nor-
malized by the potential number of neighbors.

1.4.2 Directed Networks

In directed networks the situation is a bit more difficult but manageable. Since
Ai j 6= A j i in general the number of links leaving a node is not necessarily the
same as the number of links arriving at a node. Thus we have in-degree and
out-degree

k in
i =∑

j
Ai j and kout

i =∑
j

A j i . (1.3)

The total number of links leaving nodes are the total number of links and they
also must be equal to the number of incoming links which is why

L =∑
i

k in
i =∑

i
kout

i =∑
i j

Ai j

Note that this is different from Eq. (1.2) by a factor of 2. Even if Ai j = A j i

and thus in-degree and out-degree are the same for each node in a symmetric
network, between a pair of nodes there’s always also a pair of links.

Because of (1.3), the average in- and out-degree must be the same

〈
k in〉= 1

N

∑
i

k in = 1

N

∑
i j

Ai j = L

N
= 1

N

∑
i

kout = 〈
kout〉 .
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1.4.3 Weighted Networks

In weighted networks it also makes sense to just focus on the connectivity,
given by the adjacency matrix A (i.e. computing the degree of nodes). Ad-
ditional insight is gained by using the weight matrix W . For instance we can
compute the capacity φi of a node, adding the weights of its links

φi =
∑

j
Wi j

If the network is directed and weighted we have in-capacity and out-capacity

φin
i =∑

j
Wi j and φout

i =∑
j

W j i . (1.4)

and just like in the situation with degree the average in- and out-capacity must
be equal 〈

φin〉= 1

N

∑
i
φin

i = 1

N

∑
i j

Wi j = Ω

N
= 1

N

∑
i
φout

i = 〈
φout〉 ,

whereΩ denotes the capacity of the entire network.

1.4.4 Example: The Worldwide Air Traffic Network

This network consists of N = 4,092 airports (nodes) and L = 25,477 links. The
network is weighted and symmetric. The weight wi j quantifies the number
of passengers travelling between nodes i and j per day. Using the concepts
above we can do a litte statistics

Worldwide Air Traffic Network

〈k〉 12.4521
kmax 345 FRA〈
φ

〉
2177.725 passengers/day

φmax 158,169 passengers/day ATL
ρ 0.30438%

〈w〉 248
wmax 28370 Sapporo -> Tokio

23



Contents

Rank Airport k

1 Frankfurt International Apt 345
2 Paris Charles de Gaulle Apt 301
3 Amsterdam 293
4 Munich International Airport 274
5 Atlanta Hartsfield-Jackson Intl Apt 269
6 London Gatwick Apt 245
7 Chicago O’Hare International Apt 216
8 Milan Malpensa Apt 211
9 Dusseldorf International Airport 211

10 London Heathrow Apt 208

Table 1.1: Top ten airports worldwide in terms of their degree k. European Air-
ports have a comparatively high degree.

We see that the network is not very densely connected. We also see that the
mean strength of a connection is almost two orders of magnitude smaller than
the maximum strength (ATL, Atlanta Intl. Airport). Tables 1.1 and 1.2 list the
top ten airports in terms of degree and capacity. Clearly these are different,
airports that are strongly connected are not necessarily the ones that have a
strong flux. However, in general a trend exists between degree and capacity.
This is shown in Fig. 1.8.

1.4.5 Example: Florida Foodweb

This is a network of species that interact with one another by eating them-
selves. We have N = 122 species and the number of links in the network is
L = 1767. This is a directed network. A connection from i → j exists if carbon
is going from species i to species j in other words if species j eats species i .
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Rank Airport φ

1 Atlanta Hartsfield-Jackson Intl Apt 1.581698e+05
2 Chicago O’Hare International Apt 1.364909e+05
3 London Heathrow Apt 1.257413e+05
4 Los Angeles International Apt 1.094880e+05
5 Tokyo Haneda Apt 1.073322e+05
6 Dallas/Fort Worth Intl Apt 1.058395e+05
7 Paris Charles de Gaulle Apt 9.959137e+04
8 Frankfurt International Apt 9.745675e+04
9 Beijing Capital Apt 8.283938e+04

10 Madrid Barajas Apt 8.027420e+04

Table 1.2: Top ten airports worldwide in terms of their capacity φ measured in
passengers per day. US airports have a comparatively high degree.
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Figure 1.8: Correlation of degree k and capacity φ in the worldwide air trans-
portation network.
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Rank Species kin

1 Crocodiles 39
2 Raptors 37
3 Predatory Ducks 37
4 Greeb 36
5 Dolphin 34
6 Scianids 34
7 Big Herons 33
8 Loon 33
9 Pompano 33

10 Other Demersal Fishes 31

Table 1.3: Most diverse predators in the florida foodweb.

Florida Foodweb〈
k in

〉= 〈
kout

〉
14.4836

k in
max 39 Crocodiles

kout
max 60 Predatory Shrimp
ρ 11.97%

In comparison to the transportation network this network is much denser
and highly connected. Note that although the average in-degree and out-
degree are the same as they have to be, the maximum of both quantities are
different. Crocodiles have a diverse menu, and predatory shrimp get eaten by
lots of other species. A top ten list of predadors and prey is given in the tables
below.

1.5 Paths

Given a network it is often of interest to determine in what way one can get
from one node to another node by a sequence of intermediate nodes. Let’s
consider undirected unweighted networks first. A path is a sequence of nodes

P = n1, .....,nk
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Rank Species kout

1 Predatory Shrimp 60
2 Herbivorous Shrimp 60
3 Pink Shrimp 54
4 Omnivorous Crabs 45
5 Bivalves 43
6 Goldspotted killifish 37
7 Detritivorous Gastropods 37
8 Detritivorous Amphipods 36
9 Herbivorous Amphipods 35

10 Suspension Feeding Polych 35

Table 1.4: most popular prey.

10
0

10
1

10
2

10
0

10
1

10
2

k
in

k
o

u
t

Figure 1.9: Correlation of kin and kout in the Florida foodweb. The data sug-
gest that species don’t exist that have both a low in and out degree.
Obivously no correlation between out degree and in degree exists.
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such that each pair ni ,ni+1 with i = 1, ...,k−1 has a link. Generally some of the
nodes (and links) can appear multiple times in a such a sequence.

Components and Paths
Paths make it easy to define compoments of networks. A component of a net-
work is a collection of nodes such that a path exists between any two pairs of
nodes. Obviously no path exists between two different components. The situ-
ation is a little more complicated in directed networks which will be discussed
later.

Self-Avoiding Paths
Those are paths in which nodes or links are only visited once. Paths that do
not visit links multiple times but nodes are not self-avoiding.

1.5.1 Length of a path

There are various ways of measuring the length of a path, depending on the
type of network and application, various measures are useful.

Hops
The most intuitive measure is just based on the number of hops performed,
e.g. in a sequence of k nodes that length is

lT = k −1.

Weighted networks
In weighted network each link has a magnitude wi j and depending on the ap-
plication this can be translated into distance, most often a reciprocal relation
is assume, i.e.

di j = 1

wi j
,

which means that the stronger the weight the closer two nodes i and j . A the
length of a path P can be computed using this distance

lw =
k−1∑
i=1

1

wni ni+1
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1.5.2 Paths and the adjacency matrix

For unweighted networks which are determined by their adjacency matrix,
this matrix is very useful in computing the number of paths between two cho-
sen nodes. Let’s assume we have three nodes i , j and k. A path starting a i via
j to k exists if there’s a link connection i and j and j and k. That means only if

Ai j A j k = 1

Therefore if we sum over j the result is the number of paths that connect i and
k

n2(i |k) =∑
j

Ai j A j i .

The rhs. of this equation is the multiplication of the adjacency matrix with
itself, so

n2(i |k) = [
A2]

i k

So the number of paths of length 2 connection i and k are given by element i j
of the square of the adjacency matrix. Likewise if we chose a start node i and
a terminal node k and would like to know how many paths of length l can be
constructed from i to k this is given by

nl (i |k) =
[

Al
]

i k
. (1.5)

Let’s look at the example again, depiced in Fig. 1.7. The adjacency matrix is
given by

A =


0 0 0 0 0
0 1 0 0 0
1 1 0 1 0
0 0 0 0 0
0 0 1 1 1
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So let’s count the number of paths connecting nodes that have length 3, to this
end we need to look at

A3 =


0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
1 2 1 2 1


This means that exactly one path exists that goes from node 1 to node 5 that
has length 3. and two different ways exist to go from 4 to 5.

1.5.2.1 Loops/cyles

Of particular interest are the number of paths that start at node i and end there
as well. According to Eq. (1.5) the number of i−loops of length l is given by

nl (i |i ) =
[

Al
]

i i
,

the diagonal elements of the l−th power of the adjacency matrix. The total
number of loops of length l in the entire network is given by the sum

nl =
∑

i
nl (i |i ) = TrAl

In the above example we see that there are always only two loops for any path
length. The reason is clear if I start on nodes 1,3 and 4 I always end up on node
5. The only possibility to loop are the self loops on nodes 2 and 5.

1.5.2.2 Counting triangles in networks

Sometimes it’s useful to be able to count triangles in networks. Triangles are
often used in interpreting network structures. In friendships a triangle means
that two friends of a person are also friends. According to what we discussed
above we could count the triangles in an undirected network by

n∆ = 1

6
TrA3 (1.6)
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Figure 1.10: Triangular, undirected planar network consisting of 500 nodes.
Given the expression 1.6 and the 500×500 adjacency matrix A we
compute quickly that this network has 884 triangles.

One of the things we have to understand is that the operation really counts
paths, so a path i → j → k → i is counted as well as j → k → i → j and also
k → i → j → k plus the same in both directions. In directed networks, the
number of triangles is given by. That’s why we have to devide by 6.

n∆ = 1

3
TrA3

Let’s see if this works. Fig 1.10 depicts a planar triangular graph with 500
nodes. for which the number of triangles were compute using the above for-
mula.
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1.5.3 Paths and Eigenvalues

We can use a little linear algebra to relate shortest paths to eigenvalues of the
adjacency matrix A. Let’s first consider an undirected network. In this case the
adjacenc y matrix is symmetric, Ai j = A j i . A symmetric matrix has only real
eigenvalues. From linear algebra we now that in this case we can write

A = UDUT (1.7)

where U is an orthogonal matrix (consisting of the eigenvector basis of A) and
D is a diagonal matrix with eigenvalues on its diagonal. For an orthogonal
matrix we have UUT = 1, and thus

TrA = Tr(UDUT ) = Tr(DUT U) = Tr(D) =∑
i
λi

where λi are the eigenvalues of A. Also

Tr(Al ) = Tr(UDUT UDUT ....UDUT︸ ︷︷ ︸
l−times

) = Tr(UDl UT ) = Tr(Dl ) =∑
i
λl

i .

And thus we can write

nl =
∑

i
nl (i |i ) = TrAl =∑

i
λl

i

where λi is the i th eigenvalue of A. This is very interesting because the eigen-
values, let alone their powers, are not whole numbers but the above sum must
end up being a whole number.

1.5.3.1 Directed networks

The above reasoning assumes undirected networks, i.e. symmetric A. For
undirected networks, less can be said about the spectrum. However, Some-
thing similar to Eq. (1.7) exists called the Schur decomposition which states
than any N ×N matrix can be writen as

A =U TU t
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where T is an upper triangular matrix. The reaoning above then suggest that
the trace of Al is given by

Tr (Al ) =∑
i

Ti i

where Ti i are the diagonal elements of the upper triangular matrix T .

1.5.4 Geodesic shorest paths Paths

Obivously, given two nodes i and j , we find typically that many paths of var-
ious length exist between the two nodes. Imagining the set of all such paths
P i j . We can define a subset Si j of shortest paths, those that have the mini-
mal number of steps. These are called geodesic paths or simply shortest paths.
The union of all shortest paths, i.e. for all pairs of nodes i and j is the set of all
shortest paths in the network

S =⋃
i , j

Si j .

Note that in an undirected networks if a path Pi j is a shortest path from i to
j then it must also be a shortest path from j to i . This is not true for directed
networks.

Example: worldwide air transportation network
Say we want to compute a shortest path from Raleigh-Durham Airport (RDU)
to Hannover Airport (HAJ) in Germany. The shortest path length from RDU to
HAJ is 3, and one of the shortest paths is

RDU → Y Y Z → H AJ

the airport Y Y Z is Toronto International Airport.

1.5.4.1 Shortest paths in weighted networks

But let’s recall that for weighted networks it is more useful to compute distance
by inverse weight

di j = 1

wi j
. (1.8)
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Using this measure the shortest route has length 5 and is given by

RDU → AT L →ORD → LHR → MUC → H AJ .

This often makes sense in networks that are completely connected. Say we
have a weighted network in which wi j > 0 for every pair of nodes. According to
what we discussed earlier, it doesn’t really make much sense to regard this as
a network because the connectivity is trivial. One exception is shortest paths
in fully connected networks.

Example: The world trade network
A good example is the world trade network shown in Fig. ??. This is a fully con-
nected network of 191 countries (data based on the year 2001). The network is
symmetric and weighted, so everything is encoded in the weight matrix Wi j .
The shortest path computed by quantifying distance of each step according
to (1.8). So, although the US, e.g. have direct links to all the other nodes, using
the shortest path to other countries often involves intermediate steps. The in-
terpretation of this particular network would be that the likelihood of a trade
between two countries may be greater if untermediate steps are involved.

1.5.4.2 Network diameter

Geodesic paths are often use to define the notion of the diameter of the net-
work. say we compute, for all pairs of nodes i and j the set or shortest paths
S . There are two definitions that are useful for defining the diameter of the
network

• The longest path in the ensemble of shortest paths

D0 = max(S )

• the average shortest path in the ensemble of shortest path

D̄ = 1

M

∑
k

Pk

where Pk ∈S .
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Let’s again compare two networks, the Worldwide Air transportation network,
and the planar, triangular grid of Fig. 1.10 except for we chose a larger one
with 4000 nodes, to be comparable to the WAN. The table shows the same
comparison for the US air transportation network and a triangular grid with
400 nodes.

Worldwide Airtransport. Triangular Grid US Airtransport. Triangular Grid
4039 4000 459 450

D0 18 41 10 16
D̄ 6.54 21.7 3.65 8.15

We see from this that the average shortest path length in the planar graphs
is about a factor of 3 larger than in the real transportation network. This is
because of the long range connections and the small world effect which we
will discuss in detail later.

1.5.5 Eulerian and Hamiltonian paths

In some applications it is important to search through the network and visit
either all nodes or traverse all links. Paths that accomplish this are called Eu-
lerian paths and Hamilonian paths:

• Eulerian Path: visit each link exactly once (like in the Königsberg prob-
lem)

• Hamiltonian Path: visits each node exactly once.

1.6 Components

When investigating the stability of networks the concept of components is es-
sential. Components are disconnected subnetworks of a network. It straight-
forward to use paths as a definition of components. For each pair of nodes i , j
in a component of an undirected network a path must exist that goes from i to
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Figure 1.11: Three component undirected network

j . If the pair is in two components now path exists. Say we have the following
adjacency matrix. This corresponds to the network illustrated in Fig. 1.11

It represents an undirected network with three components. That’s not seen
because of the labeling of the nodes.

A =



0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
0 1 0 0 1 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1


We can write another adj. matrix, relabeling the nodes 5 → 3 and then we see
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that the new adj. matrix has the form

A =



0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 0 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1


=

 A1 0 0
0 A2 0
0 0 A3



with

A1 =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

 , A2 =
 0 1 1

1 0 1
0 0 1

 , A3 = 0.

That means the network can be regarded as a direct sum of subnetworks. Note
that the submatrices have all the properties that the original matrix has (sym-
metry, loop structure etc.). For instance we can still compute the number of
paths of lengh l by TrAl because

Al =

 Al
1 0 0

0 Al
2 0

0 0 Al
3


and

TrAl =∑
k

TrAl
k .

1.6.1 Components in directed networks

In directed networks, the situation is more difficult because all the links are
one-way streets. So getting somewhere does not imply that you can get back.

37



Contents

2\
Figure 1.12: Components in directed networks. This network has two weakly

connected components and 5 strongly connected components.

1.6.1.1 Weakly connected component

This is just pretending that the links are not directed. It matters only that I can
get from one node to the other.

1.6.1.2 Strongly connected components

First we consider that two nodes i and j are strongly connected if there’s a path
(not necessairly a direct link) from i to j and possiblity a different path from j
to i . A strongly connected compoment is a set of nodes such that each pair of
them is strongly connected.

1.6.1.3 Out-Component and In-Component

In directed networks it is sometimes of interest to know what part of the net-
work can be reached from a given nodes, and what part of the network can
reach a given node. The first is called the out component Cout(i ) the second
one the in component Cin(i ). If I intersect both, I get the subset of nodes that
can be reached from i and that can reach i . Therefore the intersection is the
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strongly connected component of i

C (i ) =Cout ∩Cin

1.7 Bi-Partite networks

Formally, a bi-partite network is an undirected network such that the set of
nodes V can be grouped into two disjoint sets V1 and V2 and that the links
of the network only exist between pairs of nodes i and j such that i ∈ V1 and
j ∈ V2. In other no links exist within V1 and V2. In a way that is the opposite
of having a network with two disconnected components. Fig. 1.13 illustrates
a simple bi-partite network. The best way to display this type of network is a
co-linear alignment of the groups of nodes and their links in between.

The adjacency matrix of this particular network looks like this

A =
(

0 B
B T 0

)
with

B =
 1 0 1 0

1 0 1 1
1 1 0 1


is a 3× 4 matrix encoding the links from the perspective of the black nodes
and B T is a 4×3 matrix informing how the white nodes receive links from the
black ones. The adjacency matrix of the bi-partite network, has the opposite
structure of a network of independent components (i.e. the block-diagonal
form). Often it is much more useful to just use the N1×N2 matrix B (denoting
the number of nodes in the groups by N1 and N2) because it contains all the
information. This matrix is called the incidence matrix.

1.7.1 Applications

1.7.1.1 Hypergraph expansion

We have previously discussed the concept of hypergraphs, in which subsets
of nodes are not pairwise linked by linked by hyperlinks, which connect more
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Figure 1.13: A small bi-partite network. The entire network has N = 7 nodes.
Links only exist between pairs of nodes such that one node is
white and on is black. A useful representation of the connectivity
is the colinear represensation of the two groups and their linkage
in between.
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nodes than just pairs, see Fig. 1.4. Let’s say we have a network of N nodes and
we have M groups, or cliques. The hypergraph can visualized as a bi-partite
network if we consider the cliques to be nodes of a different type and draw a
link from original node i to clique node k if i is in group k. This way we will
obtain an N ×M incidence matrix B .

1.7.1.2 Examples

Typical examples appear in recommender systems where we have a pool of
people and a pool of things they evaluate. For instance we could have N cus-
tomers and M products they like, e.g. netflix users and films. Another example
could be people (nodes) and restaurants they frequent (groups). Another in-
teresting example from biology are biochemical reactions in which nodes are
reactants or metabolites and the groups they participate in are chemical reac-
tions. And yet another well studies system are networks in which the nodes
are research authors and the groups the papers they co-author, or the nodes
are actors and the groups are films they are part of.

1.7.2 The human disease network

One of the most famous and recent applications of bipartite networks is the
construction of the human diseasome, the relation between diseases that are
caused by gene malfunction. This network is illustrated in Fig. 1.14. This net-
work was computed from a bipartite network in which nodes are genes and
the groups are diseases they cause. We start otu with a set of N genes that are
known to cause a set of M diseases. A gene defect i may cause a number of
diseases α1, ....,αk . This generates a bipartite network that can be described
by and N ×M incidence matrix B .

As such, B is just a big table, what can we do with it to gain insight about the
diseases of the interplay of the genes that cause them?

1.7.3 One-Mode Projections

If we have such a bi-partite network we can produce two types of one-mode
projections. We can form and N × N network of genes and and M × M net-
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Supporting Information Figure 13 | Bipartite-graph representation of the diseasome. A disorder (circle) and a gene (rectangle) are connected if the gene is implicated in the disorder. The size of the circle represents the number of distinct genes associated with the disorder. Isolated disorders (disorders having no links to other disorders) are not shown. Also, only genes connecting disorders are shown.

Disorder Class

Disorder Name

Bone
Cancer
Cardiovascular
Connective tissue disorder
Dermatological
Developmental
Ear, Nose, Throat
Endocrine
Gastrointestinal
Hematological
Immunological
Metabolic
Muscular
Neurological
Nutritional
Ophthamological
Psychiatric
Renal
Respiratory
Skeletal
multiple
Unclassified

5233 Placental steroid sulfatase deficiency
5170 Ovarian hyperstimulation syndrome
4291 Cerebral cavernous malformations
3558 Ventricular fibrillation, idiopathic
3512 Total iodide organification defect
3260 Premature chromosome condensation w/ microcephaly, mental retardation
3229 Pigmented adrenocortical disease, primary isolated
3212 Persistent hyperinsulinemic hypoglycemia of infancy
3144 Optic nerve coloboma with renal disease
3037 Multiple cutaneous and uterine leiomyomata
2785 Hypoplastic left heart syndrome
2385 Creatine deficiency syndrome, X-linked
2354 Congenital bilateral absence of vas deferens
2327 Chronic infections, due to opsonin defect
1614 Yemenite deaf-blind hypopigmentation syndrome
1611 XLA and isolated growth hormone deficiency
1586 Weissenbacher-Zweymuller syndrome
1580 Warfarin resistance/sensitivity
1565 Vitamin K-dependent coagulation defect
1555 VATER association with hydrocephalus
1545 Unna-Thost disease, nonepidermolytic
1542 Ullrich congenital muscular dystrophy
1528 Trismus-pseudocomptodactyly syndrome
1526 Trifunctional protein deficiency
1519 Transposition of great arteries, dextro-looped
1518 Transient bullous of the newborn
1490 Thanatophoric dysplasia, types I and II
1476 Tauopathy and respiratory failure
1475 Tarsal-carpal coalition syndrome
1466 Sweat chloride elevation without CF
1456 Subcortical laminar heterotopia
1446 Stevens-Johnson syndrome, carbamazepine-induced
1438 Stapes ankylosis syndrome without symphalangism
1432 Spondylocarpotarsal synostosis syndrome
1414 Solitary median maxillary central incisor
1401 Skin fragility-woolly hair syndrome
1396 Silver spastic paraplegia syndrome
1383 Severe combined immunodeficiency
1376 Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
1361 Schwartz-Jampel syndrome, type 1
1347 Sandhoff disease, infantile, juvenile, and adult forms
1335 Robinow syndrome, autosomal recessive
1325 Rhizomelic chondrodysplasia punctata
1297 Pyruvate dehydrogenase deficiency
1267 Prolactinoma, hyperparathyroidism, carcinoid syndrome
1265 Progressive external ophthalmoplegia with mitochondrial DNA deletions
1263 Prion disease with protracted course
1239 Pneumothorax, primary spontaneous
1238 Pneumonitis, desquamative interstitial
1232 Pituitary ACTH-secreting adenoma
1229 Pigmented paravenous chorioretinal atrophy
1227 Pigmentation of hair, skin, and eyes, variation in
1183 Papillary serous carcinoma of the peritoneum
1174 Pallidopontonigral degeneration
1164 Osteoporosis-pseudoglioma syndrome
1153 Ossification of the posterior longitudinal spinal ligaments
1140 Oligodontia-colorectal cancer syndrome
1133 Oculofaciocardiodental syndrome
1119 Norwalk virus infection, resistance to
1113 Noncompaction of left ventricular myocardium
1105 Newfoundland rod-cone dystrophy
1104 Nevus, epidermal, epidermolytic hyperkeratotic type
1096 Neurofibromatosis-Noonan syndrome
1090 Neural tube defects, maternal risk of
1080 Nephrogenic syndrome of inappropriate antidiuresis
1057 Myokymia with neonatal epilepsy
1056 Myoglobinuria/hemolysis due to PGK deficiency
1050 Myelomonocytic leukemia, chronic
1016 Mitochondrial complex deficiency
1002 Methylcobalamin deficiency, cblG type
1001 Methionine adenosyltransferase deficiency, autosomal recessive
982 Melorheostosis with osteopoikilosis
969 Medullary cystic kidney disease
959 Mastocytosis with associated hematologic disorder
945 Mandibuloacral dysplasia with type B lipodystrophy
942 Malignant hyperthermia susceptibility
930 Lynch cancer family syndrome II
913 Lower motor neuron disease, progressive, without sensory symptoms
891 Leukoencephalopathy with vanishing white matter
868 Laryngoonychocutaneous syndrome
847 Keratosis palmoplantaria striata
845 Keratoderma, palmoplantar, with deafness
843 Keratitis-ichthyosis-deafness syndrome
833 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome
830 Jervell and Lange-Nielsen syndrome
809 Infundibular hypoplasia and hypopituitarism
803 Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked
792 Hystrix-like ichthyosis with deafness
785 Hypoplastic enamel pitting, localized
780 Hypoparathyroidism-retardation-dysmorphism syndrome
734 Hyperkeratotic cutaneous capillary-venous malformations
733 Hyperkalemic periodic paralysis
727 Hyperferritinemia-cataract syndrome
701 Homozygous 2p16 deletion syndrome
699 Homocystinuria-megaloblastic anemia, cbl E type
679 High-molecular-weight kininogen deficiency
665 Hemosiderosis, systemic, due to aceruloplasminemia
646 Hearing loss, low-frequency sensorineural
626 Greig cephalopolysyndactyly syndrome
604 Glutathione synthetase deficiency
594 Glomerulocystic kidney disease, hypoplastic
584 Giant platelet disorder, isolated
558 Fuchs endothelial corneal dystrophy
549 Foveomacular dystrophy, adult-onset, with choroidal neovascularization
545 Focal cortical dysplasia, Taylor balloon cell type
544 Fluorouracil toxicity, sensitivity to
539 Fibular hypoplasia and complex brachydactyly
535 Fibrocalculous pancreatic diabetes
527 Fatty liver, acute, of pregnancy
474 Emery-Dreifuss muscular dystrophy
471 Elite sprint athletic performance
463 Dystransthyretinemic hyperthyroxinemia
461 Dyssegmental dysplasia, Silverman-Handmaker type
453 Dysalbuminemic hyperthyroxinemia
452 Dyggve-Melchior-Clausen disease
441 Dopamine beta-hydroxylase deficiency
439 Dissection of cervical arteries
438 Disordered steroidogenesis, isolated
434 Dilated cardiomyopathy with woolly hair and keratoderma
422 Dermatofibrosarcoma protuberans
418 Dentinogenesis imperfecta, Shields type
396 Cyclic ichthyosis with epidermolytic hyperkeratosis
379 Craniofacial-skeletal-dermatologic dysplasia
378 Craniofacial-deafness-hand syndrome
377 Craniofacial anomalies, empty sella turcica, corneal endothelial changes
357 Conotruncal anomaly face syndrome
347 Colonic aganglionosis, total, with small bowel involvement
344 Cold-induced autoinflammatory syndrome
329 Chylomicronemia syndrome, familial
320 Choreoathetosis, hypothyroidism, and respiratory distress
313 Cholesteryl ester storage disease
294 Cerebrovascular disease, occlusive
292 Cerebrooculofacioskeletal syndrome
287 Central hypoventilation syndrome
279 Cavernous malformations of CNS and retina
275 Carpal tunnel syndrome, familial
217 Bone mineral density variability
210 Blepharophimosis, epicanthus inversus, and ptosis
198 Beta-2-adrenoreceptor agonist, reduced response to
192 Beare-Stevenson cutis gyrata syndrome
182 Bannayan-Riley-Ruvalcaba syndrome
171 Attention-deficit hyperactivity disorder
162 Athabaskan brainstem dysgenesis syndrome
144 Arrhythmogenic right ventricular dysplasia
137 Apparent mineralocorticoid excess, hypertension due to
129 Anxiety-related personality traits
126 Anterior segment anomalies and cataract
117 Angiotensin I-converting enzyme
107 Analgesia from kappa-opioid receptor agonist, female-specific
96 Alternating hemiplegia of childhood
92 Alpha-thalassemia/mental retardation syndrome
87 Alpha-1-antichymotrypsin deficiency
77 Aldosterone to renin ratio raised
53 Adrenal hyperplasia, congenital
26 Achondrogenesis-hypochondrogenesis, type II
18 Acampomelic campolelic dysplasia

Figure 1.14: The human disease network
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Figure 1.15: top left: a hyper graph consisting of 7 nodes in 5 groups. top right:
the equivalent bi-partite networks. lower left: the one-mode pro-
jection generating a network among the nodes, lower right: a one-
mode projection generating a network among the groups.
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work of diseases. Let’s assume we have the simplified version of a hypergraph
and bipartite networks shown in Fig. 1.15. We have 8 genes labeled 1...8 and
5 diseases labeled A...E . We can generate the N × N network among genes
by setting Ai j = 1 if two genes i and j cause the same disease. This amounts
to connecting all the nodes cause the same disease. All nodes in that cause
disease A for example will be connected all-to-all, they form what is called a
clique.

Likewise we can form a projection in the other direction. We can generate a
network between diseases, connecting the disease α and β if they are caused
by at least one common gene. In fact, in this direction it can happen that a
disease is caused by multiple genes so we can generate a weighted network
Wαβ in which the entries count the number of genes that cause both α and β.

Formally we start out with the N ×M incidence matrix B in which the rows
i lavel the genes and the columns α the diseases. For the example in Fig. 1.15
we have

B =



1 0 0 0 0
1 1 0 1 0
1 0 0 1 0
0 0 0 1 1
0 0 0 0 1
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0


Element Biα = 1 if gene i can be associated with disease α. Thus a connection
between i and j exists if BiαB jα = 1 and BiαB jα = 0 otherwise. So we can sum
over all the diseases to count the number of connections between gene i and
j which we define as the weight between i and j

Wi j =
M∑
α

BiαB jα =
M∑
α

BiαB T
α j (1.9)

and thus
W = BBT

is a weighted N ×N matrix. Doing this in the example of genetic disease we
would expect if Wi j is large, then these genes probably have something do to
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with each other in causing a number of diseases and are thus important. In
the above example we get

W =



1 1 1 0 0 0 0 0
1 3 2 1 0 1 1 0
1 2 2 1 0 0 0 0
0 1 1 2 1 0 0 0
0 0 0 1 1 0 0 0
0 1 0 0 0 2 1 1
0 1 0 0 0 1 1 0
0 0 0 0 0 1 0 1


We see from this and also from Eq. (1.9) that Wi j =W j i so as expected we have
an undirected weighted networks. What do the weights tell us. Interestingly
W has nonzero diagonal elements.

Wi i =
M∑
α

BiαBiα =
M∑
α

Biα = qi

where qi is the number of diseases that gene i causes.
The other projection direction can also provide interesting information. If

BiαBiβ = 1 that means that gene i has causes both diseases α and β which
would suggest a relation between those diseases. The number

Ωαβ =
N∑
i

BiαBiβ =
N∑
i

B T
αi Biβ

thus counts the similarity between disease α and β by the number of genes
that cause it, the matrix

Ω= B T B

is a similarity matrix of all the groups or in our example diseases. So it’s an
M ×M matrix. For the incidence matrix above we obtain

Ω=


3 1 0 2 0
1 3 1 1 0
0 1 2 0 0
2 1 0 3 1
0 0 0 1 2
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Gene Disease

BMPR1B Brachydactyly
NTRK2 Obesity
ADAR Dyschromatosis
SLC5A1 Glucose/galactose malabsorption
RB1CC1 Breast cancer
MEN1 Lipoma
SLC2A4 Diabetes mellitus
CIITA Rheumatoid arthritis
COL1A1 Caffey disease
ALG8 Congenital disorder of glycosylation

Table 1.5: Genes and Genetic diseases.

Again this is a symmetric matrix. The diagonals Ωi i quantify by how many
gene defects cause a disease.

1.7.4 Real Data

The real data set consists of N = 1777 genes that are known to cause diseases
and a list of M = 1238 genetic diseases. The incidence matrix is an 1777 ×
1238 matrix. The incidence matrix has 2673 links, it is therefore very sparse.
The density of the incidence matrix is ρ = 0.12%. Fig. 1.16 shows the incidenc
matrix. This was constructed from a link table with rows that contain a link
from gene to disease i →α, a piece of that table is shown in Tab. 1.5

Now we can perform the one-mode projections, i.e. compute the N×N gene
network and the M ×M matrix of diseases.

1.7.5 The gene network

The gene network has 14982 non-zero entries which means the density is about
ρ = 0.45%. Remember that the diagonal elements Wi i quantify the number of
diseases a defective gene i may play a part in. Fig. 1.17. Some genes play a role
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Figure 1.16: The incidence matrix B or the human diseaseome.
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Figure 1.17: The diagonal matrix elements Wi i of the one mode projection
onto gene space. Wi i is shown as a function of gene index i .

in many diseases. For instance the gene TP53 is a tumor suppressor gene. It’s
failure causes tumor growth.

Gene Disease Count

TP53 11
PAX6 10
PTEN 9
FGFR2 9
MSH2 8
MEN1 8
FGFR3 8
LRP5 7
APC 7
ARX 6

Gene k

TP53 78
CCND1 70
KRAS 68
EYA4 64
RAD54L 60
PIK3CA 58
MSH2 57
PPARG 56
CAV3 50
BRCA2 50

Another interesting questions concerns how genes are linked in the one-
mode projection. Which ones are the most connected genes? This could po-
tentially be at the root of the cause of a specific disease. This high degree genes
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in the one-mode projection network are not necessarily the ones involved in
the most groups. We see in the Tables above that there are differences in their
ranks. Yet the tumor suppressor TP53 is also a gene with a high degree. We
learn from this analysis that this particular gene should be in the focus of re-
search on genetic diseases.

1.7.6 The human disease network

We can proceed along the same lines for the one-mode projection of the bi-
partite network onto the M ×M network of human diseases. This network has
3054 links and thus a density of ρ = 0.18%. This network is sparse as well. In
this projection we can rank the diseases by the diagonal elements Ωαα which
count how many gene defects can cause the disease. Likewise we can rank the
diseases according to their degree, which would imply that a high degree dis-
ease goes together with a number of other diseases. The top ranking diseases
are given in the table below:

Disease Gene Count

Deafness 41
Leukemia 37
Colon cancer 34
Retinitis pigmentosa 30
Diabetes mellitus 27
Cardiomyopathy 25
Mental retardation 24
Blood group 23
Obesity 21
Breast cancer 19

Disease k

Colon cancer 66
Breast cancer 43
Gastric cancer 30
Diabetes mellitus 29
Deafness 28
Thyroid carcinoma 26
Pancreatic cancer 26
Leukemia 26
Retinitis pigmentosa 25
Ovarian cancer 24

1.8 Centrality

Having seen properties of some networks, it is intuitively clear that some nodes
are more essential than others. In transportation networks some nodes are
more highly connected than others, in the disease network the gene T P53
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had a high degree and thus we would think that this gene is very important.
The concept of central nodes and links is intimitely linked to the study of net-
work resilience, robustness and susceptibility to targeted attacks. Presumably,
failure of central nodes has more dramatic consequences than failure or pe-
ripheral nodes (or links).

1.8.1 Degree Centrality

The simplest and most intuitive centrality measure that only requires local in-
formation about a node is degree centrality, i.e. centrality according to the de-
gree. The more neighbors a node has the more central it is. Table XX lists the
top 10 degree nodes of the US Air Transportation network (N = 702) and the
top 10 genes in the human diseaseome network (this network is the one-mode
projection of the bi-partite network that links genes to genetic diseases).

1.8.2 Eigenvector Centrality

Degree centrality increases proportional to the number of neighbors a node
has. It does not distinguish between the types of neightbors. For instance two
nodes may have k = 10 but one is connected to nodes that also posess a high
degree whereas the other may be connected to nodes that all possess a low
degree. Eigenvector centrality accounts for this. Let’s assume that we have
a network described by the adjacency matrix A. Let’s assume we denote the
centrality of a node i by xi . And we would like this centrality to be proportional
to the sum of the centralities of the neightbors it connects to, so

xi ∝
∑

j
Ai j x j

We can set both sides equal by introducting a proportionality constant

λxi =
∑

j
Ai j x j

In matrix form this reads
Ax =λx
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Rank degree Node

1 181.00 Atlanta Hartsfield-Jackson Intl Apt
2 164.00 Minneapolis International Apt
3 154.00 Dallas/Fort Worth Intl Apt
4 143.00 Chicago O’Hare International Apt
5 140.00 Las Vegas McCarran International Apt
6 140.00 Houston George Bush Intercontinental Ap
7 139.00 Cincinnati Northern Kentucky Intl Apt
8 138.00 Denver Intl Apt
9 135.00 Detroit Wayne County

10 109.00 Salt Lake City

Rank degree Node

1 70.00 TP53
2 70.00 CCND1
3 65.00 KRAS
4 64.00 EYA4
5 55.00 PPARG
6 54.00 RAD54L
7 51.00 PIK3CA
8 48.00 MSH2
9 48.00 ACE

10 47.00 GJB6

Table 1.6: Rank of nodes in the US Air Transportation network and a genetic
network according to degree centrality.
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where the vector x is the vector of centralities of the nodes in the network. Of
course this equation has generally many solutions. But we would like to have
a centrality measure that is non-negative xi ≥ 0. Because we are dealing with
an undirected network A is symmetric and it only has non-negative entries.
Now we’ve got this theorem called the Frobenius-Perron theorem that states,
that the largest eigenvalue of all the eigenvalues is the only one that has an
eigenvector with non-negative entries xi . So all we need to to is compute the
spectrum, look for the largest eigenvalue and the corresponding eigenvector
x. The entries of this eigenvector are the eigenvector centralities of the nodes.

A good way to normalize this is by

yi = xi

〈x〉 .

This way, if all the nodes generate the same xi all their centralities are one.
Tab. 1.7 shows the eigenvector centrality of the US-Air transportation net-

work as well as the gene network. Compare to Tab. 1.6. Interesting are of
course those nodes that show a deviation from a perfect correlation

1.8.3 Closeness Centrality

Degree and eigenvector centrality are based on topological features along and
take into account only information in the neighborhood of a node i . Using
the concepts of paths and distances (which is global information) we can get
a more metric notion of centrality. An analogy to mechanics is usefull. Say we
have a three dimensional object defined by a three dimensional region V and
say some constant mass density ρ(x). The total mass of the object is given by
the integral

M =
∫

V
d 3xρ(x).

The center of mass is given by

〈x〉 = 1

M

∫
V

d 3x xρ(x).

Given some point in the mass x0 we could define its centrality by the distance
to the center of mass

C (y) = |y−〈x〉 |
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Rank EV-centrality Node

1 10.65 Atlanta Hartsfield-Jackson Intl Apt
2 9.96 Chicago O’Hare International Apt
3 9.84 Minneapolis International Apt
4 9.80 Cincinnati Northern Kentucky Intl Apt
5 9.73 Dallas/Fort Worth Intl Apt
6 9.47 Detroit Wayne County
7 9.25 Houston George Bush Intercontinental Ap
8 8.99 Newark Liberty International Apt
9 8.95 Las Vegas McCarran International Apt

10 8.59 Cleveland Hopkins International Apt

Rank EV-centrality Node

1 21.29 EYA4
2 20.77 PCDH15
3 20.77 USH1C
4 20.77 MYO7A
5 20.77 CDH23
6 20.65 GJB6
7 20.58 GJB3
8 20.57 JAG1
9 20.57 COL11A2

10 20.57 GJB2

Table 1.7: Eigenvector centrality for the two networks.
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Now let’s assume that the mass density is concentrated at N locations xi . Math-
ematically we would write

ρ(x) =
N∑
i
δ(x−xi )

where the funtion δ(x) is strongly peaked, then

C (y) =
∣∣∣∣∣ 1

N

∑
i

(y−xi )

∣∣∣∣∣
Likewise we can use the set of shortest paths of node i to all the remaning
nodes as a measure of centrality. Let’s assume denote by li j a shortest path
from i to j . For all the destination nodes we can compute

〈l (i )〉 = 1

N −1

∑
j

li j

assuming that the shortest paths are unique. This is the aerage shortest path
from node i to the rest of the network. If that number is small, we are not very
far away from everything, which means that we are close to the center, if that
number is large, we are far way from the rest of the network. This means that
the inverse

xi = 1

〈l (i )〉 .

could be used to quantify centrality in a traditional way. Let’s see if this works
with a planar graph. Fig. 1.18 shows that in fact nodes with a high closeness
centrality are in fact close to the barycenter of the network.

1.8.4 Betweenness Centrality

A little bit more sophisticated is the concept of betweenness centrality. This
measure tries to capture the situation illustrated in Fig. 1.19 in this network,
one of the nodes connects two parts of the network. Clearly this node is im-
portant in the sense that if it were removed it would disconnected the whole
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Figure 1.18: Closeness centrality in a planar graph. The nodes are colored ac-
cording to closeness centrality.
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Figure 1.19: The meaning of betweenness centrality. The node in the center
has a small degree but a large betweenness centrality.

network. Note that a high degree is not required for this function, in fact in the
example network other nodes have a more important role. The way to cap-
ture this type of centrality is betweenness: the fraction of shortest paths that
pass through a node. Let’s denote the set of all shortest paths connecting all
N (N −1)/2 pairs of node i and j by S and the subset Bi the subset of shortest
paths that pass through node i . The betweenness

bi = Bi

S

is defined as the number of elements in the set B by the total number of short-
est paths in the network S. Let’s again look at two examples: the US air trans-
portation network and the planr triangular graph. Note that betweenness, just
like closeness is small on the border of the planar graph. In the US air trans-
portation network we see that although most of the large airports also have a
high betweenness, there are some that have a high betweenness although their
degree centrality is small. Those airports for instance that serve as connectors
to Alaska.
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Rank Betweenness Node

1 0.78 Anchorage International Apt
2 0.26 Seattle/Tacoma International Apt
3 0.24 Minneapolis International Apt
4 0.21 Fairbanks International Apt
5 0.18 Denver Intl Apt
6 0.17 Atlanta Hartsfield-Jackson Intl Apt
7 0.16 Bethel Municipal Apt
8 0.13 Dallas/Fort Worth Intl Apt
9 0.12 Las Vegas McCarran International Apt

10 0.11 Houston George Bush Intercontinental Ap

Table 1.8: Betweenness centrality in the US Air transportation network

Figure 1.20: betweenness centrality in a planar network.
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1.9 Centrality in Weighted Networks

Most of the concepts are generalizable for weighted networks, with some ex-
pection.

1.9.1 Generalized degree (capacity) centrality

In weighted networks we can associate centrality with the capacity φi of node
i , i.e.

φi =
∑

j
Wi j

1.9.2 Eigenvector centrality

If we are dealing with an undirected weighted network, i.e. if Wi j = W j i then
the Frobenious-Perron Theorem holds as well, which means that we start with

λxi =
∑

j
Wi j x j

which defines the eigenvector centrality xi for node i by finding the largest
eigenvalue λ of the weight matrix W.

1.9.3 Closeness and betweenness centrality

When we take into acount weights, that can change the effective distance be-
tween nodes. Remember that we defined the distance between connected
nodes in a weighted networks according to

d(i , j ) = 1

wi j
.

and the length of a path n1, ...,nk with k −1 legs is given by

lP =
k−2∑
i=1

d(ni ,ni+1) =
k−2∑
i=1

1

wni ,ni+1 .
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Figure 1.21: Shortest paths in weighted networks are different and thus impact
on the betweenness of nodes.

The definition of weighted closeness centrality uses the same equation as in
the unweighted networks, i.e.

xi = 1

〈l (i )〉 .

but the average shortest path

〈l (i )〉 = 1

N −1

∑
j

li j

of a node i could be quite different since the shortest path from i to some
other node j could be different if weights are taken into account. The same
argument is true for betweenness centrality in weighted networks. It’s still de-
fined as the fraction of shortest paths, but the set of shortest paths change if
weights are taken into account.

1.10 Link Betweenness

Although predominantly people focus on nodes and their centrality it is rea-
sonable to also quantify how important individual links are in a network. For
example, a large fraction of shortest paths could go through a single link and
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Figure 1.22: Link Salience, the superposition of shortest path trees.

this link would serve as a bridge, connecting two parts of a network. Therefore,
given a link (i , j ) the betweenness centrality of that link

Bi j = # of shortest paths going through i j

total # of shortest paths in network
.

is the number fraction of shortest paths that pass through that link. It is con-
venient to represent this as a matrix B. Let’s assume for simplicity that given a
pair of nodes i and j that the shortest path between them is unique. Then the
total number of shortest paths is N (N −1)/2 and thus scales with N 2. Some-
times that is not a good behavior because often the number of shortest paths
going to a given link i j scales as N and in the limit N →∞ betweenness would
disappear.

1.11 Link Salience

This, and for other reasons, make it more plausible to use link salience. This is
a very simple concept. Given a certain root node i one computes the shortest
path tree T (i ) to the rest of the network. In a way, this shortest path tree is the
union of most effective routes to go from i to any other node of the network.
We can represent T (i ) as a matrix with elements T j k (i ) such that T j k (i ) = 1
is the link j k is in the shortest path tree of node i and zero otherwise. The
salience of link j k is then defined as the average accross all shortest path trees

S j k = 1

N

∑
i

T j k (i )

This means the salience can be represented as and N ×N matrix S. If S j k ≈ 1
that means that link j k is important for all nodes, the nodes agree that this

60



Contents

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Allentown/Bethlehem/EastonAbilene Municipal AptAmbler

Albuquerque

AberdeenAlbany Dougherty County AptNantucketWaco Municipal AptArcata/EurekaAtlantic City InternationalAdak Island

Kodiak Apt

AlenevaAllakaketAlexandria International AptAngoonAugusta Bush FieldAthensAllianceWainwrightAtkaAkiak

King Salmon

Anaktuvuk Pass Albany International AirportAlamogordo Municipal AptWaterlooAlamosaWalla WallaAlitakAmarillo International Apt

Anchorage International Apt

Aniak

AnvikAltoonaAmookNaplesAlpenaArctic Village
Watertown

AspenAtqasuk

Atlanta Hartsfield−Jackson Intl Apt

AtmautluakAppletonWatertownAugustaAlakanuk Austin−Bergstrom International AptAshevilleWilkes−Barre Scranton International AptKalamazoo Hartford Bradley International AptBridgeportBedford/Hanscom

Bethel Municipal Apt

BradfordScottsbluff
Seattle Boeing Field

BakersfieldBinghamtonBangorBar Harbor BirminghamBig Creek

Billings

BismarckBemidjiBucklandBeckleyBrookingsBluefieldBellinghamBellevilleBloomington−Normal Nashville
Boise

Boston Logan International Apt

Beaumont Jefferson County AptBrunswick Glynco JetportBrainerdBurlingtonBrownsville
Barrow Wiley Post/Will Rogers Memorial

BartlettsBarter IslandButteBaton Rouge Metropolitan AptBettles BurlingtonBuffaloBurbankBrownwood
Baltimore Washington International Apt

BoundaryBozemanColumbia Metropolitan AptAkron/Canton Ohio Regional
Cold Bay

Cedar CityChadronCordova Mudhole Smith AirportCrescent CityCentralCortezCoffee PointCraigCape GirardeauChattanooga Lovell Field AptCharlottesvilleCharlestonChuathbalukChicoCedar RapidsChalkyitsikSault Ste Marie Chippewa County AptClarksburgCrooked CreekChickenSan Diego Carlsbad Apt
Cleveland Hopkins International Apt

College StationPort AngelesClarks Point

Charlotte
Columbus Port Columbus Intl AptChampaignHancockCarlsbadMoabCody Colorado Springs Peterson FieldColumbiaCasperJacksonville Craig Municipal AptCorpus Christi International AptCharlestonColumbus Metropolitan Apt

Cincinnati Northern Kentucky Intl Apt

Clovis Municipal AptWausau Central Wisconsin AptChefornakCheyenne Municipal AptChisanaDaytona BeachDallas/Fort Worth Love FieldDayton Intl AptDubuque
Washington Ronald Reagan National Apt

Dodge CityDecatur

Denver Intl Apt

Dallas/Fort Worth Intl Apt

DothanDickinsonDiomede IslandDelta Junction

Dillingham

Duluth International AptDeeringDurango La Plata AptDel Rio International AptDes Moines

Detroit Wayne County

Dubois
Dutch Harbor
Devils LakeEagleKearneyWenatcheeEau ClaireEdna BayEekHouston Ellington FieldVail/Eagle County Apt
Egegik

Cape NewenhamElkoEl DoradoElim Elmira/CorningEl Paso International AptElfin CoveElyEmmonakKenaiErieEscanabaEastsoundEugeneEvansvilleNew BedfordWildman LakeNew Bern

Newark Liberty International Apt

Excursion InletKey West International Apt

Fairbanks International Apt

FargoFresno Yosemite International AirportFayetteville Municipal AptKalispellFort Huachuca/Sierra VistaFranklin Chess Lamberton AptGrand Canyon Pulliam Field Airport
Fort Lauderdale/Hollywood Intl Apt

FlorenceFarmingtonFort Collins/Loveland Municipal AptFlintFort DodgeTopeka Forbes AFBFort PierceFriday HarborSioux FallsFort SmithFort Wayne Baer FieldFort Yukon
Galena

GambellGreat BendGilletteGarden CityGrand Canyon National Park AptGlendiveSpokane International AptGrand ForksLongviewGlasgowGrand JunctionGreenvilleGolovinGoodnews BayGainesvilleNew London/GrotonGulfport/BiloxiGrand RapidsGreen BayGrand IslandKilleen Gray AAFGrand RapidsGreensboro/High PointGreenville/Spartanburg AptGustavus AptGreat Falls International AptColumbus Golden Triangle Regional AptGunnisonGallupChicago Gary International AptHoly CrossSteamboat Springs Hayden Yampa ValleyHagerstownHilton Head IslandHibbing/ChisholmLake Havasu CityHealy LakeHickoryHelenaHoonah
Honolulu International Apt

HanaHainesHobbs Lea County Apt
Homer

HuronHot Springs Houston Hobby AptHooper BayWestchester CountyHarlingenHarrisonHusliaHuntsville International AirportHuntingtonHughesNew HavenHavreHyannisHydaburgHollisHays
Washington Dulles International Apt

Houston George Bush Intercontinental Ap

Kiana Wichita Mid−Continent AptIdaho Falls
Bullhead City

IgiugigKingmanNikolskiKilleen Municipal AptWilmington Greater Wilmington Apt
Iliamna

WilmingtonIron Mountain IndianapolisInternational FallsImperial County AptWilliamsportCircleKirksvilleWillistonKinstonLong Island MacArthurIthacaHiloIronwoodInyokernJacksonJackson−Evers International AirportJacksonville International AptJonesboro

New York J F Kennedy International Apt

KapaluaJamestownJoplinJamestown

Juneau

New York Downtown Manhattan H/PJohnstownKakeKaltagBirch CreekCoffman CoveChignik Fisheries AptChignik Lagoon AptChignik Lake Apt
NanwalekKenmore Air HarborEkwokFalse PassKoliganekGraylingKoyukKitoi BayKongiganakAkiachakEkukKalskagLevelockLarsen BayKlawockManokotakMoser BayKakhonakNew StuyahokKonaKotlikOlga BayOuzinkiePoint BakerPort ClarenceKipnukPort WilliamsPerryvillePort BaileyAkutanSt MarysSandy RiverThorne Bay

Ketchikan International Apt

Teller MissionKasiglukKing CoveKivalinaWaterfallKwigillingokQuinhagakWest PointKwethlukKasaanKarlukKoyukukZachar BayLafayetteLansingLaramie

Las Vegas McCarran International Apt

Lawton

Los Angeles International Apt

Lubbock Preston Smith International AptLatrobeNorth PlatteLiberalLake CharlesColumbus Rickenbacker AptLebanon Lexington Blue Grass AptLafayette Regional Apt
New York La Guardia Apt

Long Beach AptKauai Island Lihue Municipal AptLittle Rock

Seattle Lake Union SPB
Lake MinchuminaKlamath FallsLincolnLancasterLanai CityLopez IslandLaredoLas CrucesLa CrosseKalaupapaCape LisburneLime VillageLewisburgLewistonLewistownLynchburgMidland Odessa Regional AptManisteeSaginawMerced Macready Regional Apt

McGrath Kansas City International Apt
McCookMacon Lewis B Wilson Apt

Orlando International AptMason CityHarrisburg International AptChicago Midway AptMeridian

Memphis International Apt

McAllenMedfordMontgomery Dannelly FieldMorgantownManhattanManchesterMiami International Apt
Milwaukee General Mitchell Intl Apt

MuskegonHoolehuaJacksonMelbourneMolineMarshallMiles CityMonroeManley Hot SpringsMintoMobile Municipal AptModestoMinot International AptMountain VillageMiami SPBMarquetteMonterey Peninsula AptMuscle ShoalsMadisonMissoula

Minneapolis International Apt

Massena New Orleans Louis Armstrong Intl AptMarathonMontroseMetlakatlaKamuelaMount VernonMartha’s VineyardMarionMoses Lake Grant County AptMcCall Myrtle Beach AFBMekoryukNorfolk NAS ChambersNikolaiJacksonville NASNaukitiNelson LagoonNightmuteNondaltonNuiqsutNulatoNunapitchukJacksonville Oakland International AptKobukOak HarborNorfolk
Kahului

Ogdensburg Oklahoma City Will Rogers AptWolf PointOld HarborOlympia Omaha Eppley Airfield

Nome

Ontario LA/Ontario International AptToksook Bay

Chicago O’Hare International Apt

Norfolk International AptWorcesterPort LionsNorthwayNoorvikNorth Bend

Kotzebue

OwensboroOxnard/VenturaPaducah West Palm Beach International AptPortage CreekPainter CreekPedro BayPendleton
Portland

PelicanPanama City Bay County AptPagePort GrahamGreenvilleNewport News
Philadelphia International Apt

Point Hope

Phoenix Sky Harbor Intl Apt.

PeoriaLaurel Hattiesburg−Laurel Regional AptTampa St Petersbrg−Clearwater Intl AptPocatelloPilot Point AirportPierre

Pittsburgh International Apt

Point LayNapaskiakParkersburg/MariettaPlattsburgh Municipal AptPellstonPalmdalePort MollerPonca CityPensacola Municipal AptPort ProtectionPresque IslePilot StationPrescottPascoPetersburgPortsmouth Pease International AirportPalm Springs Municipal AptPort AlsworthPort HeidenPlatinumPuebloPullmanProvincetown ProvidencePortlandRapid City Regional AptRubyRoche HarborCinder RiverRed DogReddingReadingRedmond Raleigh/DurhamRed DevilChicago Rockford AirportRhinelanderRichmondRivertonRocklandRock SpringsRampart RenoRoanokeRochesterRoswellRussian MissionRosarioRochester Municipal AptFort Myers SW Florida International AptRutlandSanta Fe San Diego InternationalSan Antonio International AptSavannah/Hilton Head International AptSanta Barbara Municipal AptSouth BendSan Luis Obispo County AptSalisbury−Ocean CityPrudhoe Bay/DeadhorseState CollegeSmith CoveSacramento Stockton AirportScammon Bay Louisville InternationalSand PointSidney

Seattle/Tacoma International Apt

Orlando Sanford International Airport

San Francisco International Apt

SpringfieldSt GeorgeSkagwayStauntonShungnakShishmarefSheridanShreveport Regional AptShagelukSitka San Jose International AptSan Angelo Mathis FieldShaktoolik

Salt Lake City

Saranac LakeSalinaSleetmute Sacramento International AptSt MichaelSalmonSanta Maria Santa Ana John Wayne AptSt Paul IslandSouthern PinesSeldoviaShow LowSpringfieldWichita Falls Sheppard AFBSarasota/BradentonStony RiverSt Cloud Municipal AptSt George Island

St Louis Lambert Intl Apt

Sun Valley Friedman Memorial AptSioux CitySavoongaSilver CityStevens VillageNewburghSheldon PointSeal Bay SyracuseTananaFort Leonard WoodTakotnaTetlinTellurideTenakee

Tok

Teller TallahasseeTatalinaTuluksakTin CityTununakTogiakToledo Express Apt Tampa International AptTri−Cities RegionalTaosPhiladelphia Trenton−Mercer AptTulsa International AptTupelo Tucson International AptTraverse CityThief River FallsTwin HillsTwin FallsTexarkanaTyler KnoxvillePilot Point Ugashik Bay AptUganikQuincyUnalakleetTunicaChevakVictoriaValdezVenetieVernal
Las Vegas North Air TerminalVisaliaValdosta Regional AptValparaiso Fort Walton Beach AptWalesStebbinsBeaverEnid Woodring Municipal AptAleknagikSelawikMeyers ChuckWhite MountainNapakiakWrangellWorlandSouth NaknekWestsoundNoatakTuntutuliakWhale PassNewtokWest YellowstoneFayetteville Northwest Arkansas Reg AptYakutatYakima Air TerminalYoungstownYuma International Apt

degree

b
e
tw

e
e
n
n
e
s
s

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A2M
ABCA1

ABCB7 ABCA4ABL1ABOACHEACTA1 ACTC ACTG1ACVR1BADA ADD1

ADRB2

ADRB3AGC1 AGRP JAG1AGT
AGTR1 AGTR2AK1 AKT2ALAS2ALOX5ALOX5APALOX12BANK1ANK2 APBB2 APCAIRE

APOA1

APOA2

APOBAPOC2APOC3
APOE

APOH

APP

APRTFASFASLG AQP1AQP3

AR

ARNTSTS DOATBF1 ATMATP1A2 ATP2B2ATP6V1B1ATP7ABAAT BARD1 BAXBCKDHABCKDHB

CCND1

BCL2BCL8 BCRBCS1LBDNF BLMHBMPR1A BPGM BRCA1
BRAFBRCA2

BSG BUB1BUB1BC1QAC1QBC1QGC1SC2C3C4AC4B

C6

C7C8BC9CA2 CA4CACNA1ACACNA1F

CACNA1S
CACNB4

CALCACALCR CAPN3CASP8CASP10CASQ2CASR

CAV3

RUNX1

CBFB CBSCD3D

CD36

CD44
CDH1

CDK4 CDKN2A CEBPACHATCHRNA1 CHRNA4CHRNB1 CHRNB2CHRNDCHRNECLCN1 CLCN2CLCN7CCR2CCR5 CNGB1CNGA1CNGA3 COL1A1

COL1A2
COL2A1

COL3A1COL5A1COL5A2COL7A1COL8A2COL9A1COL9A2COL9A3COL11A1

COL11A2

COL17A1COMPCOMT KLF6MAP3K8

COX15

CPCPT1A CPT2 CR1CREBBP CRXCRYAA

CRYAB

CRYBA1CRYBB1CRYBB2CRYGCCRYGD CRYMCSF1RCST3 CSTB
NKX2−5CTLA4 CTNNB1CYP1B1

CYP2A6 CYP3A5 DAFDBHDBT DCC

ACE

DCTN1DCX AKR1C2

DES

TIMM8ADFNA5COCHNQO1DIAPH1DLG3DMBT1 DMDDNASE1 DNM2DSG1

DSP

DSPPSLC26A2

ECE1

EDAEDN3EDNRAEDNRBEGFR EGR2ELA2ELNEMD EP300EPB41EPB42 EPHB2EPHX1EPHX2

ERBB2

EYA4

ESR1

EYA1

F5

F7

F10F11F12F13A1F13BFANCAFANCCFANCD2FANCE ACSL4FANCBFANCFFANCG

FBN1

MS4A2FCGR2BFCGR3A FCMDFGAFGB FGD1FGF14FGFR1 FGFR3
FGFR2

FGFR4 FGGFOXC1FOXE3FOXO1AFLNB FLT3AFF2FRZB FUT3G6PD GABRA1GABRB3

GABRG2

GARS

GATA1GATA4GC GCGRGCKGCNT2
GCSL

GDI1GDNFGFAPGFI1GHRHRGJA1 GJA3GJA8GJB1 GJB2GJB3GPC3 GCLCGCLMGLO1
GNAI2GNASGNAT1GNAT2 GNB3 GPD2GPIGSN GSS MSH6GUCA1A GYPAGYPB

GYPC

GUCY2DSERPIND1HD HEXB

CFH

HK1HLA−DQB1 HNF4AHNMT HOXD4HOXD10HRASHRGHSD11B2HSF4 HSPB1HSPD1HTR2AICAM1 ICAM4IFIGF2RIGHMBP2IL1BIL1RN

IL2RG

IL4RIL7R
IL10

IL12BIL13 IMPDH1ING1INS INSRIPF1ITGA6
IRF1

IRS1ITGA7ITGB4ITIH4JAK2KAL1KCNA1KCNE1KCNH2KCNJ2 KCNJ11KCNMB1KCNQ1 KCNQ2KCNQ3 KELKIF5A KIT

KRAS

KRT1

KRT2AKRT5KRT9 KRT10KRT14 LAMA2LAMA3LAMB3LAMC2LDLR LEPLEPRLGALS2LIM2

LMNA

LOR
LPPLRP5

LTA LUSH2D1ALYZTACSTD2SMAD4MAPT

MATN3

MC3RMC4R MCCCHST6MDS1 ME2
MECP2

MEF2A
MEN1 MET

CIITA

MIF MIPMITF MLH1
NR3C2

MMP3MN1MPL MPO MPZMRE11A

MSH2

MSH3 MSR1MSX1MSX2MTHFRMTP MUTYHMXI1 MYBPC3MYF6

MYH6

MYH7

MYH8 MYH9MYL2MYL3 MYO1AMYO6

MYO7A

MYOC NBNNDP NDUFS1NDUFS2NDUFS3NDUFV1NDUFS4NDUFS8NDUFV2NEFH NEFL NEUROD1
NF1

NF2NFKBIANFKBIL1NGFBNME1NOS2A
NOS3

NPM1SLC11A2 NRAS
NRL

NRTNNTRK1 NTRK2 NUMA1NR4A2OAS1OCA2 ODC1OGG1OLR1OPA1 OPHN1

SLC22A18

P2RX7PAFAH1B1 PAK3

PARK2

PAX3

PAX6

PAX7PAX9PC PCM1 PCSK1PDCD1PDE4D PDE6APDGFBPDGFRA PDGFRLPDE6BPDHA1PDHB
ENPP1

SLC26A4PGAM2PGK1 PHBSERPINA1 PIK3CAPITX2
PITX3

PKLRPKP1PKP2 PLA2G2APLAG1 PLAU

PLEC1

PLNPLOD1PLP1 PMLPMP22 PMS1PMS2POMCPON1PON2 POU3F4POU4F3

PPARG

PPP1R3APPP2R1B PPP2R2BPRCC PRKAR1APRKCGPRNPPROCPRODHPRPHRELN

PSEN1

PSEN2
PTCH PTEN

PTGDRPTGISPTPN1 PTPN11PTPN12

PTPRC

PTPRJ
PVRL1

RAD51RAG1RAG2RAP1GDS1RAPSNRASA1RB1 RBBP8RDH5 RDSREN
RET

RFX5RFXAP RGRRHAG RHCERHD RHORLBP1RNASELRNF6 ROM1RP9

RP1

RP2

RPGR

RPE65RPS6KA3RPS19

RYR1
RYR2

SAT ATXN1ATXN2ATXN7KLHL1ASSCN1A

SCN4A

SCN5ASCNN1ASCNN1BSCNN1GCCL5 SDHASDHBSDHCSDHDTRAPPC2SELP SGCASGCB

SGCD

SGCG

SHH

SIM1SIX3 SLC2A2SLC2A4

SLC4A1

SLC5A5SLC6A4 SLC6A8SLC14A1SLC34A1SLC22A4SNAI2SMN1SMO SMSSNCB

SNCA

SOD1 SOX3SOX10 SPASTSPG7SPTA1

SPTB

SRCSSTR5 STAT5BELOVL4CDKL5 STK11 ABCC8SURF1SYN1SYN2 TAL1TAL2TAP2TAPBP TAZ

TBP

TCF1

TCF2 TRA@TECTATFE3TGTGFBITGFBR1
TGFBR2

TGIF TGM1

THBD

THPOTHRATHRB TSPAN7

TNF

TNNC1TNNI3TNNT2TNXB

TP53

TPI1 TPM1TPO TSG101TSHB

TSHR TTN

TTPATTR TULP1TWIST1 TNFSF4TYRTYRP1UBE3A UCHL1 UCP1UCP2UCP3SCGB1A1UQCRB

USH2A

USH3A VEGF
VHL

VMD2
WAS

WT1 XGXRCC3ZIC2 ZNF41 ZBTB16PAX8ARMET RAB7

PLA2G7

EPM2A NUP214MLLT10NCOA4 CSRP3HMGA2 SMCXDYSF PICALMAXIN1 AXIN2FZD4 MAD1L1BFSP2 NR0B2 RAD54LPRSS12PPM1DIKBKG

TCAP

JRKPTCH2ALDH4A1 IRS2SLC4A4 B3GALT3TNFRSF10BTRIM24 GMPSWISP3PROM1 MTMR2 BCL10PHOX2B PRPF3 KCNQ4

LGI1

LARGE

VAPB

LRATKL OTOFTJP2ITM2B ARHGEF6CHST3 MAPK8IP1MYOTADAMTS2 LITAFMINPP1GPR51 CARTSNCAIPENTH RB1CC1MFN2GOLGA5KCNE2 NR2E3KCNE3 ABCC9

USH1C

LRPPRCOPTNTCIRG1 ZNFN1A1DLC1NDRG1 MERTKFBLN5AGPAT2SPTLC1 POMT1 PRPF8

GJB6

C7orf16PPARGC1AEDAR MLLT11SPINK5KERAADAMTS13 CAPN10IL1RAPL1LZTS1 CHEK2RNF139 SLC6A14POU6F2B4GALT7PARK7RRAS2RAB3GAP1 TRIM32PAXIP1ALS4 ARHGAP26KIF1BACSL6 ARHGEF12ZFPM2 CRB1 CLDN14PADI4 AIPL1FTSJ1 RAD54BFSCN2ATXN10 DFNB31PLEKHG4LDLRAP1 PRPF31ABCA12

PTPN22

SACSHSPB8 CHIC2

BSCL2

HAVCR1 MLH3DISC1OSTM1VSX1DUOX2ATP6V0A4 FOXP3TBX22 SPG3APHF11 MYO15ACRBNNT5C3 PRKAG2TRIM33SUFU GHRLWWOX MYO3AA4GALTGDAP1NLGN3CNGB3ASPNAPTX WHSC1L1FANCLTDP1

RETN

RPGRIP1 SEPN1 KIAA1199JPH3 NLGN4X

ALS2

FANCMPRXALOXE3NYX ELAC2ALX4

CDH23

DCLRE1C TMPRSS3P2RY12 PINK1RTN4RWNK1

PCDH15

WNK4CRELD1 FKRPCDC73 SH3TC2SLC25A22 MYH14GRHL2OPA3ADAMTS10 SBF2 ESPNHMCN1
BRIP1

MASS1MASTLATCAY MYLK2MCFD2EFHC1C1QTNF5 ARL11APOA5 SCGB3A2 TMC1CASP12P1 LRRK2NIPA1USH1GGJB4 EDARADDRDH12CDAN1 OTOALIPI STRC

ARX

PIP5K3
FLCN

STOX1PCSK9 PTF1A TMIETAAR6SCA25 ZNF81ICHTHYINNDUFS7 CERKL SLC26A5HSN2 NHLRC1 SUMO4GPR154

degree

b
e

tw
e

e
n

n
e

s
s

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

3−methylglutaconicaciduriaAarskog−Scott
s
yndromeABCD

s
yndromeAbetalipoproteinemia"Achondrogenesis−hypochondrogenesis,

t
ype

I
I"Achondrogenesis

I
bAchondroplasiaAchromatopsiaAcquired

l
ong

Q
T

s
yndromeAcromegaly

Adenocarcinoma

"Adenoma,
p
eriampullary"AdenomasAdenosine

d
eaminase

d
eficiencyAdrenocortical

c
arcinomaAdult

ip
henotypeAfibrinogenemiaAlagille

s
yndromeAlbinismAlcohol

d
ependenceAlexander

d
iseaseAllergic

r
hinitisAlternating

h
emiplegia

o
f
c
hildhood

Alzheimer
d
isease

Amyloid
n
europathy

Amyloidosis

Amyotrophic
l
ateral

s
clerosis

Androgen
i
nsensitivityAnemiaAngelman
s
yndrome"Angiofibroma,

s
poradic"Angiotensin

I
−converting

e
nzyme"Aniridia,

t
ype

I
I"Anorexia

n
ervosa

Anterior
s
egment

a
nomalies

a
nd

c
ataract

Anxiety−related
p
ersonality

t
raitsAortic

a
neurysmApert

s
yndrome

Apolipoprotein
d
eficiency

"Apparent
m

ineralocorticoid
e
xcess,

h
ypertension

d
ue

t
o"Aquaporin−1

d
eficiency

Arrhythmogenic
r
ight

v
entricular

d
ysplasia

ArthropathyAsperger
s
yndrome

Asthma

AtaxiaAtaxia−telangiectasia
Atelosteogenesis

AtherosclerosisAtopy

Atrial
f
ibrillation

Atrioventricular
b
lock

Autism
Autoimmune

d
iseaseAxenfeld

a
nomalyBannayan−Riley−Ruvalcaba

s
yndromeBare

l
ymphocyte

s
yndromeBarth

s
yndromeBart−Pumphrey

s
yndrome

Basal
c
ell

c
arcinoma

Beare−Stevenson
c
utis

g
yrata

s
yndromeBecker

m
uscular

d
ystrophyBenzene

t
oxicity"Beta−2−adrenoreceptor

a
gonist,

r
educed

r
esponse

t
o"Birt−Hogg−Dube

s
yndrome

Bladder
c
ancer

Blood
g
roup

Bone
m

ineral
d
ensity

v
ariabilityBothnia

r
etinal

d
ystrophyBranchiootic

s
yndrome

Breast
c
ancer

Brugada
s
yndrome"Butterfly

d
ystrophy,

r
etinal"Complementary

c
omponent

d
eficiencyCafe−au−lait

s
potsCaffey

d
iseaseCancer

s
usceptibilityCapillary

m
alformations"Carcinoid

t
umors,

i
ntestinal"

Cardiomyopathy

Carney
c
omplex"Carpal

t
unnel

s
yndrome,

f
amilial"

Cataract

Central
h
ypoventilation

s
yndromeCerebellar

a
taxia

Cerebral
a
myloid

a
ngiopathyCervical

c
arcinoma

Charcot−Marie−Tooth
d
iseaseCleft

p
alate

Coats
d
iseaseCoffin−Lowry

s
yndrome

"Coloboma,
o
cular"

Colon
c
ancer

"Colonic
a
ganglionosis,

t
otal,

w
ith

s
mall

b
owel

i
nvolvement"Cone

d
ystrophy

Convulsions

Corneal
d
ystrophy

Coronary
a
rtery

d
iseaseCostello

s
yndromeCoumarin

r
esistanceCowden

d
isease"CPT

d
eficiency,

h
epatic""Cramps,

p
otassium−aggravated""Craniofacial

a
nomalies,

e
mpty

s
ella

t
urcica,

c
orneal

e
ndothelial

c
hanges,

a
nd

a
bnormal

r
etinal

a
nd

a
uditory

b
ipolar

c
ells"Craniofacial−deafness−hand

s
yndromeCraniofacial−skeletal−dermatologic

d
ysplasiaCraniosynostosisCreatine

p
hosphokinaseCreutzfeldt−Jakob

d
iseaseCrouzon

s
yndrome

Cutis
l
axa

Cyclic
i
chthyosis

w
ith

e
pidermolytic

h
yperkeratosis

Deafness

Dejerine−Sottas
d
isease

Dementia

"Dentin
d
ysplasia,

t
ype

I
I""Dentinogenesis

i
mperfecta,

S
hields

t
ype"Denys−Drash

s
yndromeDermatofibrosarcoma

p
rotuberans"Desmoid

d
isease,

h
ereditary"

Diabetes
m

ellitus

Diastrophic
d
ysplasiaDilated

c
ardiomyopathy

w
ith

w
oolly

h
air

a
nd

k
eratodermaDissection

o
f
c
ervical

a
rteriesDopamine

b
eta−hydroxylase

d
eficiencyDuchenne

m
uscular

d
ystrophyDyserythropoietic

a
nemiaDysfibrinogenemiaDystransthyretinemic

h
yperthyroxinemiaEBD

Ectodermal
d
ysplasia

Ectopia

Ehlers−Danlos
s
yndrome

ElliptocytosisEmery−Dreifuss
m

uscular
d
ystrophyEmphysema

Endometrial
c
arcinomaEnhanced

S
−cone

s
yndromeEnlarged

v
estibular

a
queduct

Epidermolysis
b
ullosa

Epidermolytic
h
yperkeratosis

Epilepsy

Epiphyseal
d
ysplasia

Episodic
a
taxiaEpstein
s
yndromeErythrokeratodermaEsophageal
c
ancerEstrogen

r
esistance
Exudative

v
itreoretinopathy

Eye
a
nomalies

Factor
xd

eficiency

Fanconi
a
nemiaFanconi−Bickel

s
yndromeFavismFechtner

s
yndromeFoveal

h
ypoplasia"Foveomacular

d
ystrophy,

a
dult−onset,

w
ith

c
horoidal

n
eovascularization"Frasier

s
yndromeFuchs

e
ndothelial

c
orneal

d
ystrophyFundus

a
lbipunctatusG6PD

d
eficiencyGardner

s
yndrome

Gastric
c
ancer

Gastrointestinal
s
tromal

t
umorGerm

c
ell

t
umorGerstmann−Straussler

d
iseaseGiant−cell

f
ibroblastomaGlaucoma

Glioblastoma

"Glomerulocystic
k
idney

d
isease,

h
ypoplastic"Glutathione

s
ynthetase

d
eficiencyGoiterGRACILE

s
yndromeGraft−versus−host

d
iseaseGraves

d
iseaseGrowth

h
ormone

HDL
c
holesterol

l
evel

Q
TL

Heart
b
lock"Hemangioblastoma,

c
erebellar""Hematopoiesis,

c
yclic""Hemiplegic

m
igraine,

f
amilial"

Hemolytic
a
nemia

Hemolytic−uremic
s
yndromeHemorrhagic

d
iathesis"Hemosiderosis,
s
ystemic,

d
ue

t
o

a
ceruloplasminemia"

Hepatic
a
denoma

Hirschsprung
d
isease

HistiocytomaHIV

Holoprosencephaly

Homocystinuria

Huntington
d
isease

Hypercholanemia
HypercholesterolemiaHypereosinophilic

s
yndromeHyperinsulinismHyperkalemic

p
eriodic

p
aralysisHyperlipoproteinemia"Hyperostosis,

e
ndosteal"Hyperparathyroidism

HyperproinsulinemiaHyperprolinemiaHyperproreninemia

Hypertension

HyperthroidismHyperthyroidism

Hypertriglyceridemia

HypoalphalipoproteinemiaHypobetalipoproteinemiaHypocalcemiaHypocalciuric
h
ypercalcemiaHypoceruloplasminemiaHypochondroplasiaHypodontiaHypofibrinogenemiaHypoglycemia

Hypokalemic
p
eriodic

p
aralysisHypothyroidism

Hystrix−like
i
chthyosis

w
ith

d
eafnessIchthyosiform

e
rythroderma

Ichthyosis
IgE

l
evels

Q
TL"Immunodysregulation,

p
olyendocrinopathy,

a
nd

e
nteropathy,

X
−linked"Incontinentia

p
igmentiInfantile
s
pasm

s
yndromeInfundibular

h
ypoplasia

a
nd

h
ypopituitarismInsensitivity

t
o

p
ainInsomniaInsulin

r
esistanceIntervertebral

d
isc

d
iseaseIridogoniodysgenesisIris

h
ypoplasia

a
nd

g
laucomaJackson−Weiss

s
yndromeJensen

s
yndromeJervell

a
nd

L
ange−Nielsen

s
yndromeJuvenile

p
olyposis/hereditary

h
emorrhagic

t
elangiectasia

s
yndromeKallmann

s
yndromeKeratitisKeratitis−ichthyosis−deafness

s
yndromeKeratoconus"Keratoderma,

p
almoplantar,

w
ith

d
eafness"

Keratosis
p
almoplantaria

s
triata

Kniest
d
ysplasiaLarson

s
yndromeLaryngoonychocutaneous

s
yndrome"Leanness,

i
nherited"Leber

c
ongenital

a
maurosis

Leigh
s
yndrome

Leopard
s
yndromeLeprechaunismLeprosy

Leukemia

Lhermitte−Duclos
s
yndromeLiddle

s
yndromeLi

F
raumeni

s
yndromeLi−Fraumeni

s
yndrome

Lipodystrophy

Lipoma

LissencephalyListeria
m

onocytogenesLoeys−Dietz
s
yndrome

Long
Q

T
s
yndrome

"Lower
m

otor
n
euron

d
isease,

p
rogressive,

w
ithout

s
ensory

s
ymptoms"Lung

c
ancer LymphomaLynch

c
ancer

f
amily

s
yndrome

I
IMacrocytic

a
nemiaMacrothrombocytopenia

Macular
d
egeneration

"Maculopathy,
b
ull’s−eye"

Malaria

Malignant
h
yperthermia

s
usceptibility

Maple
s
yrup

u
rine

d
isease

Marfan
s
yndrome

Marshall
s
yndromeMASS

s
yndromeMast

c
ell

l
eukemiaMastocytosis

w
ith

a
ssociated

h
ematologic

d
isorderMay−Hegglin

a
nomalyMcCune−Albright

s
yndromeMedulloblastomaMelanomaMemory

i
mpairmentMeniere

d
isease MeningiomaMenkes
d
isease

Mental
r
etardation

Merkel
c
ell

c
arcinomaMesangial

s
clerosisMesothelioma

Migraine

Mitochondrial
c
omplex

d
eficiencyMiyoshi

m
yopathyMODYMohr−Tranebjaerg

s
yndromeMorning
g
lory

d
isc

a
nomalyMuenke

s
yndromeMuir−Torre

s
yndrome

Multiple
e
ndocrine

n
eoplasia

Muscular
d
ystrophy

Myasthenic
s
yndromeMyelodysplastic

s
yndrome"Myelofibrosis,

i
diopathic"Myelogenous

l
eukemiaMyeloperoxidase

d
eficiency

Myocardial
i
nfarction

Myoclonic
e
pilepsy

Myoglobinuria/hemolysis
d
ue

t
o

P
GK

d
eficiencyMyokymia

w
ith

n
eonatal

e
pilepsy

Myopathy

MyotilinopathyMyotonia
c
ongenita"Myxoma,

i
ntracardiac"Nasopharyngeal

c
arcinomaNephropathy−hypertensionNetherton

s
yndromeNeuroblastomaNeuroectodermal

t
umorsNeurofibromatosisNeurofibromatosis−Noonan

s
yndrome

Neurofibromatosis

NeurofibrosarcomaNeuropathy
NeutropeniaNevo
s
yndrome"Nevus,

e
pidermal,

e
pidermolytic

h
yperkeratotic

t
ype"Newfoundland

r
od−cone

d
ystrophyNicotine

a
ddictionNight

b
lindnessNijmegen

b
reakage

s
yndromeNoncompaction

o
f
l
eft

v
entricular

m
yocardiumNon−Hodgkin

l
ymphomaNonsmall

c
ell

l
ung

c
ancerNoonan

s
yndromeNorrie

d
isease

Obesity

Obsessive−compulsive
d
isorder

Occipital
h
orn

s
yndromeOculodentodigital

d
ysplasiaOligodendrogliomaOligodontiaOligodontia−colorectal
c
ancer

s
yndromeOmenn

s
yndromeOptic

a
trophyOrolaryngeal

c
ancerOSMED

s
yndromeOsseous

h
eteroplasiaOssification

o
f
t
he

p
osterior

l
ongitudinal

s
pinal

l
igaments

Osteoarthritis

Osteogenesis
i
mperfecta

Osteopetrosis

Osteoporosis

Osteoporosis−pseudoglioma
s
yndromeOsteosarcoma

Ovarian
c
ancer

Pallidopontonigral
d
egeneration

Pancreatic
c
ancer

Papillary
s
erous

c
arcinoma

o
f
t
he

p
eritoneumParagangliomasParamyotonia

c
ongenitaParathyroid
a
denomaParietal

f
oraminaParkes
W

eber
s
yndrome

Parkinson
d
isease

Partington
s
yndromePCWHPelizaeus−Merzbacher

d
iseasePendred

s
yndromePerineal

h
ypospadias
Peters

a
nomaly

Peutz−Jeghers
s
yndromePfeiffer

s
yndromePheochromocytomaPick

d
iseasePiebaldismPigmented

p
aravenous

c
horioretinal

a
trophyPilomatricoma

Pituitary
A
CTH−secreting

a
denoma

Placental
a
bruption

Platelet
d
efect/deficiency

"Pneumothorax,
p
rimary

s
pontaneous"Polycythemia

PolyposisPPM−X
s
yndromePreeclampsiaPrimary

l
ateral

s
clerosisPrion

d
isease

w
ith

p
rotracted

c
ourse"Prolactinoma,

h
yperparathyroidism,

c
arcinoid

s
yndrome"

Prostate
c
ancer

Proud
s
yndromePseudoachondroplasiaPseudohypoaldosteronismPseudohypoparathyroidismPyropoikilocytosisPyruvate

d
ehydrogenase

d
eficiencyRabson−Mendenhall

s
yndrome

Renal
c
ell

c
arcinoma

Retinal
c
one

d
sytrophy

Retinitis
p
igmentosa

RetinoblastomaRett
s
yndrome

Rhabdomyosarcoma

Rheumatoid
a
rthritis

Rh−mod
s
yndromeRh−negative

b
lood

t
ypeRieger

s
yndromeRing

d
ermoid

o
f
c
orneaRippling

m
uscle

d
iseaseRoussy−Levy

s
yndromeRubenstein−Taybi
s
yndromeSaethre−Chotzen

s
yndromeSalivary

a
denoma"Sandhoff

d
isease,

i
nfantile,

j
uvenile,

a
nd

a
dult

f
orms""SARS,

p
rogression

o
f"

Schizophrenia

SchwannomatosisSea−blue
h
istiocyte

d
iseaseSeasonal

a
ffective

d
isorderSebastian

s
yndromeSelf−healing

c
ollodion

b
abySepsis

Severe
c
ombined

i
mmunodeficiency

Sezary
s
yndromeShah−Waardenburg

s
yndromeShprintzen−Goldberg

s
yndromeSick

s
inus

s
yndromeSilver

s
pastic

p
araplegia

s
yndromeSimpson−Golabi−Behmel
s
yndromeSkin

f
ragility−woolly

h
air

s
yndromeSMED

S
trudwick

t
ypeSolitary

m
edian

m
axillary

c
entral

i
ncisorSomatotrophinoma

Spastic
a
taxia/paraplegiaSpherocytosis

Spinal
m

uscular
a
trophy

Spinocereballar
a
taxia

Spondylocarpotarsal
s
ynostosis

s
yndromeSpondyloepiphyseal

d
ysplasiaSquamous

c
ell

c
arcinomaStargardt

d
isease

Stickler
s
yndrome

Stomach
c
ancerStrokeSubcortical

l
aminar

h
eterotopiaSupranuclear

p
alsySupravalvar

a
ortic

s
tenosisSyndactylySystemic

l
upus

e
rythematosusTangier

d
iseaseTauopathy

a
nd

r
espiratory

f
ailureT−cell

l
ymphoblastic

l
eukemiaTetralogy

o
f
F
allot"Thanatophoric

d
ysplasia,

t
ypes

Ia
nd

I
I"Thrombocythemia

Thrombocytopenia

Thrombophilia

Thyroid
c
arcinoma

Thyrotoxic
p
eriodic

p
aralysisTietz

s
yndrome"Toenail

d
ystrophy,

i
solated"Transient

b
ullous

o
f
t
he

n
ewbornTrismus−pseudocomptodactyly

s
yndromeTurcot

s
yndrome"Unna−Thost

d
isease,

n
onepidermolytic"Urolithiasise

Usher
s
yndrome

Uterine
l
eiomyomavan

B
uchem

d
iseaseVATER

a
ssociation

w
ith

h
ydrocephalus

Ventricular
t
achycardia

Vertical
t
alusViral

i
nfectionVitelliform

m
acular

d
ystrophyVohwinkel

s
yndrome

von
H

ippel−Lindau
s
yndromeWaardenburg−Shah

s
yndromeWaardenburg

s
yndrome

Wagner
s
yndromeWAGR

s
yndromeWalker−Warburg

s
yndromeWatson

s
yndromeWegener

g
ranulomatosisWeill−Marchesani

s
yndromeWeissenbacher−Zweymuller

s
yndromeWilliams−Beuren

s
yndrome

Wilms
t
umor

Wiskott−Aldrich
s
yndromeWitkop

s
yndromeWolff−Parkinson−White

s
yndromeYemenite

d
eaf−blind

h
ypopigmentation

s
yndromeZlotogora−Ogur

s
yndromeAdrenal

a
denomaAdrenal

c
ortical

c
arcinoma"Aneurysm,

f
amilial

a
rterial"Autoimmune

t
hyroid

d
iseaseBasal

c
ell

n
evus

s
yndromeCarcinoid

t
umor

o
f
l
ung

Central
c
ore

d
isease

Coronary
s
pasms"Creatine

d
eficiency

s
yndrome,

X
−linked"Hypoplastic

l
eft

h
eart

s
yndrome

Macular
d
ystrophyMedullary

t
hyroid

c
arcinomaPancreatic

a
genesisPersistent

h
yperinsulinemic

h
ypoglycemia

o
f
i
nfancy"Pigmented

a
drenocortical

d
isease,

p
rimary

i
solated"Thyroid

h
ormone

r
esistanceTotal

i
odide

o
rganification

d
efect"Ventricular

f
ibrillation,

i
diopathic"Combined

i
mmunodeficiencyMultiple

m
alignancy

s
yndromeOptic

n
erve

h
ypoplasia/aplasiaPlacental

s
teroid

s
ulfatase

d
eficiencyRenal

t
ubular

a
cidosis

Multiple
s
clerosis
Renal

t
ubular

d
ysgenesis

degree

b
e
tw

e
e
n
n
e
s
s

Figure 1.23: Correlation of betweenness and degree centrality in the US air
transportation network (left) the human genetic network (center)
and the disease network (right).

link is essential to get anywhere in the network. If S j k ≈ 0 that means this link
essentially does not matter for all nodes i .

1.12 Correlations of centrality measures

We have seen that many of the different centrality measures correlate in some
of the networks. For example the top ten table above pretty much contain the
same set of nodes in the air transportation network as well as in the gene net-
work. This is not surprising. But this can give interesting insights in case where
deviations occur from the overall trend. Let’s look at the two networks again
to see how betweenness and degree correlate. This is a pair of centrality mea-
sures that in the three example network shown in Fig. 1.23. Similar correlation
plots for the same networks are shown in Fig.

1.13 Groups

So far we’ve been focusing on individual nodes or individual links and meth-
ods on how to characterize them by centrality measures. Typically there’s more
structure in networks apart form just single element statistics, i.e. higher level
structure that involves more than just single elements. The next level of com-
plexity is about groups of nodes that are connected somewhat differently that
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Figure 1.24: Correlation structure of degree centrality and eigenvector central-
ity.

the “typical” node in the network.

1.13.1 Cliques

Say, for instance you’ve got the network depicted in Fig. 1.25, a network of
N = 100 nodes with a mean degree of k0 = 3. This is a network not very
densely connected (ρ ≈ k0/N =3%). Just looking at the adjacency matrix or a
random graph layout doesn’t show much structure. Nevertheless the network
contains a subgroup of nodes that are all connected to one another. This is
called a clique of size k if k is the number of nodes involved. Mathematically a
k−clique is thus a set of k nodes such that any given pair of nodes in the clique
is connected. Cliques are difficult to find numerically.

1.13.2 k-cores

The concept of cliques is related to k-cores in network. A very useful idea for
network layout. k-cores are based on node degree. A k-core is a maximal set
of nodes such that all nodes in the set are connected to at least k nodes in the
set. Mathematically we say

Ωk = max{i |i ∈V ,
∑

j∈Ωk

Ai j ≥ k}

So let’s say I’ve got 10 nodes in a 5-core, that means each of the 10 nodes must
be connected to at least 5 others in the set. There are some interesting things
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Figure 1.25: Top: A random network with mean degree k0 = 3. Bottom left:
The adjacency matrix of the corresponding graph. Bottom right.
The same adj. matrix, with nodes labeled differently. We see the
network has a subgroup of nodes 7 that are all connected to one
another. This group is called a clique. Cliques have different size.
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about such k-cores:

• multiple k−cores can exist in a network.

• if this is the case, they cannot be connected, because otherwise the union
would be a k−core, and we are only looking for maximal sets.

• they are very easy to compute numerically. Say you want to compute a
k−core. First, no nodes with degree less than k can be in it. So

– you start with the entire network and remove all the nodes with
degree k ′ < k

– then you remove all the dangling links of the nodes that are re-
maining

– then you have a remainder network

– then you go back to step one until you are left with the k-core or a
set of k-cores.

You can now do this for all the values of k and compute k shells by successivly
plotting the large k cores in the middle and the moving to the periphery. This
produces nice layout, see Fig. 1.26.

1.13.3 Transitivity

The basic idea behind transitivity is how reliably we can say that if nodes i and
j and nodes i and k are connected whether j and k are connected as well.
If that is the case then we have a triangle. In general if Ai j = 1 and Ai k = 1
then the nodes i , j ,k form a triplet. There are only two types of triplets: tri-
angles and non-triangles. Triangles contain 6 paths of length 3 for example
1231,1321,2312,2132,3123,3213 whereas non-triangles, regular triplets, con-
tain two paths of length 2, if e.g. node 2 is in the center of the triplet it’s
123,321. For the triangles we have A j k = 1 for regular triplets A j k = 0. Partic-
ularly in social networks a large fraction of triplets are triangles, which means
if A is friends with B and C then with a high probability B and C are also
friends. So one way of measuring the strength of transitivity of an undirected
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Figure 1.26: k-shell representation of the worldwide air transportation net-
work and the neural network of the organism C. Elegans.

unweighted network is by the fraction of triangles with respect to the entire set
of triplets.

C = 3×#triangles

#triples

This is called the clustering coefficient. The reason why we have a factor of
three is: each triangle,say i , j ,k counts for three triplets, with each of the nodes
in the middle. Here we assume that a path i , j ,k and k, j , i are the same. if we
count these paths not as one triplet, but as two, we have to multplit by 6. So
we also have:

C = 6×#triangles

#paths of length 2
. (1.10)

With these normalizations we have C = 1 if all triplets in the network are trian-
gles and C = 0 if the network is a tree. Recall that for the number of triangles
and the number of paths we only need powers of the adjacency matrix:

n∆ = 1

6
TrA3

and the number of paths of length 2 between two given nodes is given by

n2(i , j ) =∑
k

Ai k Ak j =
(
A2)

i j
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Figure 1.27: Global clustering coefficient C in a network of four nodes. This
network has 2 triangles and 16 triplets altogether, so C = 3/4 =
0.75.

So the total amount of paths of length 2 is given my

n2 = ||A2||−TrA2

where || · || means summing over all matrix elements. Note that we subtract
the number of paths of length two that come back to a node, like i , j , i on the
same link. This is given by the second term. So all in all we obtain:

C = TrA3

||A2||−TrA2

What does this number mean though? If C = 1 that means with certainty the
whole network is transitive, e.g. I can infer a connection between node j and
k if Ai j = Ai k = 1. If the clustering coefficient is say 0.18 then the likelyhood
is only 18%. We can check this in the simple network shown in Fig. 1.27. The
total number of triangles is 2 thus the numerator in Eq. (1.10) is 12. The total
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Network N 〈k〉 C CER 〈c〉
US Air Transportation 702 11.81 0.34 0.0170 0.6238

Genetic Network 903 14.97 0.85 0.0165 0.8530
Disease Network 516 5.60 0.67 0.0124 0.6358
C. Elegans Neural 297 14.46 0.18 0.0491 0.2924

Netscientist Collab. 379 4.82 0.43 0.0153 0.7412

Table 1.9: Clustering Coefficient in various networks. C is the clustering coef-
ficient, CER the clustering coefficient of an random ER network with
identical size and link density. and 〈c〉 is the mean local clustering
coefficient.

number of paths of length 2 (non including back/forth paths) are

123,143,134,132,321,312,341,314,214,234,432,413,231,213,413,431

that is 16. So C = 3/4 = 0.75 in this case. Now let’s look, again at a planar graph
such as the one depicted in Fig. 1.10. When we conmpute the clustering coef-
ficient we get for this particular example C = 0.3857. This means, given a node
and two neighbors, their likelyhood of being connected is roughly 40%. Can
we understand this? Thie planar triangular graph is almost like a triangular
grid in which each node has 6 neighbors. IF we pick a node i and one of it’s
neighbors, then in two out of the 5 remaining neighbors will also be connected
to the first one. Thus the probability of picking a triangle is roughly 2/5 = 0.4
consistent with the numerical measurement of the random triangular lattice.
Let’s now look at a couple of real networks. Table 1.9 lists the clustering coeffi-
cient C for a couple of networks that we discussed.

When comparing these networks the clustering coefficient is useful. But
given a single network, what does a value of say C = 0.45 mean? Sometimes
some insight can be given by comparing a real network with a random network
(which we will discuss in detail later) that has the same size and link density.
One such network is the Erdos-Renyi network in which one can specify the av-
erage degree 〈k〉 and the number of nodes. Essentially the probability of a link
of exisiting is given by p = 〈k〉/(N −1).
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So if I have a node and two of it’s neighbors, the probability of them being
connected is entirely random which means it’s p. So for instance in the genetic
network above this would emply that CER = 0.0166 which is also confirmed by
the values shown in Tab. 1.9. That means, the clustering in the real networks
above are much higher than expected by chance.

1.13.4 Local Clustering Coefficient

The definition of transitivity as above is a global network property. Often, it is
of value to address clustering on a local level. Say we have a node i with degree
ki that means that node has ki neighbors. Clearly, the maximum number of
connections among the neighbors is

nmax
i = ki (ki −1)

2
.

In this case, we would say that the neighborhood of node i is maximally clus-
tered. A good measure for the local clustering coefficient is thus

ci = 2ni

ki (ki −1)

where ni is the actual number of connections among the neighbors of i . Let’s
look at the simple graph of Fig. 1.27 again. Here we have

c1 = 2/3,c2 = 1,c3 = 2/3,c4 = 1

The average local clustering coefficient is also a measure for the clustering of
the entire networks

〈c〉 = 1

N

∑
i

ci = 2

N

∑
i

ni

ki (ki −1)
.

In the above example this is

〈c〉 = 1

4

(
2× 2

3
+2

)
= 5

6
= 0.83

Note that this is different from the global clustering coefficient. Usually how-
ever, the average local clustering coefficient is used in applications. Both can
be quite different, in particular in strongly heterogeneous networks with strong
degree variability.
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Figure 1.28: A directed network with 7 links, 4 of which are reciprocal yielding
a reciprocity of the network of R = 4/7.

1.13.5 Reciprocity

So far we’ve been focusing on local structure of undirected and unweighted
networks. We will not be discussing clustering in weighted networks although
generalizations of C and ci exist for weighted networks. The idea of local struc-
ture in directed networks can be addressed by reciprocity. This means, if a
have a directed link i to j , how likely is it to have a link in the direction j to i .
So, for example in Fig. 1.28 we have 7 links and 4 of those are reciprocal. So we
would expect the reciprocity to be R = 4/7 in this network. In fact we define
the reciprocity as

R = TrA2

||A|| .

The numerator is the number of self-loops of length 2 that is exactly the num-
ber of reciprocal links. and

||A|| =∑
i j

Ai j

is the total number of links in a directed network. Note that a symmetric di-
rected network has R = 1 because every link comes in pairs. From which we
also learn that

TrA2 = ||A||
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for symmetric adjacency matrices. Let’s look at our Floria foodweb. We have
N = 122 nodes. we find R = 0.0045 which means that only with a probabil-
ity of 0.45% a link is reciprocal. That is logical since species tend to not prey
reciprocally. But what is the chance of a random network with the same con-
nectivity as the foodweb to have a reciprocal link? The foodweb has 1767 links.
this means a density of about 11.87%. Generating a random network with the
same density gives a typical reciprocity of that, so by chance this should be
12% roughly. Foodwebs are a factor of 20 below.

1.13.6 Motifs

It turns out that many real world network exhibit small connectivity patterns
that appear more than expected by chance that are not just triangles and recip-
rocal connections. Particularly in protein-protein interaction networks cer-
tain structures are more prominent than others. These structures are called
motifs. Fig. 1.29 shows all the possible motifs that involve three nodes. Clearly
in directed network more motives can be generated with fewer nodes. Some
of the motifs have names, like feedforward loop, or three chain or bi-fan. The
point is, that some of these small little network motifs occur with a much
higher probability in networks than expected by change.

The way this is determined in a real situation is illustrated in Fig. 1.30 for
a particular motif, the feedforward loop. First one measures the number of
occurances of the motif in the real network. Then one randomizes the network
by cutting each link in the middle. This way, if L is the number of links in
the network, one gets L arrowheads and L arrow feet. From each of these set
of “half”-links we form a random set of links by connecting the links. This
way the degrees of the nodes of the original network do not change but their
connectivity structure is lost. If in the resulting randomized networks we find
substantially less motifs of the type we are investigating, it seems plausible to
assume that the funtionality of the original network has something to do with
these motifs.

Fig. 1.31 shows a table of data obtained from various network.
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Figure 1.29: Motifs involving three nodes in directed networks. The link direc-
tion has a different meaning in different networks. In gene regu-
lation the arrow represents regulatory influence of one gene onto
another. In neural networks it represents a synaptic connection
and in foodwebs it represents a predator prey relationship.
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Figure 1.30: Motif measurements. Left: The network represents a real network
that has a number of feed forward motifs. Randomizing the links
in the network one can determine whether this motif occurs more
frequently than expected by chance.

Figure 1.31: Motifs in different types of networks.
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1.13.7 Structural Equivalence

Another way to detect similarities or structure in networks is by comparing
how a pair of nodes connect to the network. Say we compare node i and j .
The way they connect to the rest of the network is given by Ai k and A j k with
k = 1, ..., N . We can interpret the rows i and j as two vectors ai and a j with

(ai )k = Ai k and
(
a j

)
k = A j k

If the two nodes i and j connect to a large set of common other nodes the dot
product of ai and a j is going to be large and when the share now neighbots it
is zero. So the number of common connections is given by the dot product or
the overlap

ni j = ai ·a j

So we can define structural equivalence of two nodes as being

σi j ∝ ni j

However we need to take into account that not all vectors have the same length
i.e. not all nodes have the same degree. For instance if the two nodes have both
a degree of 5 and connect to the same other nodes we should have σi j just as
large as when both nodes had degree 50. Thus it is a good idea to normalize
the vectors to unit length so

σi j =
ai ·a j

|ai ||a j |
=

∑
k Ai k Ak j√∑

k A2
j k

√∑
k A2

i k

If we are dealing with unweighted networks we have A2
j k = A j k and likewise of

i so then

σi j =
(
A2

)
i j√

ki k j

the normalization is the geometric mean of the degree.
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1.13.7.1 Pearson Correlation

Let’s assume we start with the number of connections two nodes share

ni j =
∑
k

Ai k Ak j

Now, even in a totally random network, two arbitrary nodes are going to have
ni j > 0, just by chance. So we could approach the problem by asking how
much more similar are two nodes than they would be by chance. Let’s assume
the nodes have degree ki and k j . Let’s assume i choses one of the other N −
2 neighbors by chance. The probability that this node is also chosen by j is
k j /(N −2) ≈ k j /N . Now i picks another neighbor randomly. Again, the prob.
that j has also picken that one is k j /N . So the total expected

〈
ni j

〉 = ki k j /N
which we should subtract from the above equation so

σi j =
∑
k

Ai k Ak j −ki k j /N

In a totally random network we would have
〈
σi j

〉= 0. Now

σi j = ∑
k

Ai k Ak j −ki k j /N

= ∑
k

Ai k Ak j −
1

N

∑
k

Ai k

∑
k

A j k

= ∑
k

Ai k Ak j −N

(
1

N

∑
k

Ai k
1

N

∑
k

A j k

)
= ∑

k
Ai k Ak j −N 〈Ai 〉

〈
A j

〉
where 〈Ai 〉 = ki /N is average entry in row i . Thus

σi j = ∑
k

[
Ai k Ak j −〈Ai 〉

〈
A j

〉]
= ∑

k
(Ai k −〈Ai 〉)

(
A j k −

〈
A j

〉)

74



Contents

Figure 1.32: Relationships between individuals of different races.

This is the covariance of the two rows corresponding to nodes i and j . This
can also be normalized by the variances

σi =
√∑

k
(Ai k −〈Ai 〉)2

so

ri j =
∑

k (Ai k −〈Ai 〉)
(

A j k −
〈

A j
〉)

√∑
k (Ai k −〈Ai 〉)2

√∑
k (A j k −

〈
A j

〉
)2

This correlation coefficient is another measure of how similar the connectivity
structure of nodes i and j is.

1.14 Homophily and Assortative Mixing

This idea is realted to what was discussed previously when we discussed clus-
tering and the idea that if node A is connected to B and C then with a prob.
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higher than chance B and C are also connected. This idea can be generalized
in the following way. Often we have, in addition to their linkage, more infor-
mation about the nodes. For instance, if the network resembles a system of
friendships among students we can invistigate how properties of individual
nodes such as race, sex, age, nationality determine a networks connectivity. A
typical example of assortative mixing is shown in Fig. 1.32 which shows that
inter-racial couples are less frequent than inter racial couples. That means, if I
have a given link in the network, the probability that the two nodes it connects
are of the same group is higher than chance.

Say I have a network consisting of m different groups with Nm nodes in each
group such that

N =∑
m

Nm .

The relative size of the groups is

cm = Nm/N .

If I were to construct a link randomly, the probability of this connecting groups
m and m′ is given by there relative size

p0(m,m′) = cmcm′ .

and that a link would be within a group would be

p0(m,m) = c2
m

If we find that in a real network the probability the actual fraction of links
within a group m larger, i.e.

p(m,m) > p0(m,m)

this is called assortative mixing. If

p(m,m) < p0(m,m)

we speak of dissortative mixing.
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1.14.1 Mixing by groups

Mathematically we can describe the fact that each node is in a single group
by a mapping from the vertices V into the set of groups G . Let’s say we’ve got
N nodes and M groups, and each node belongs to exactly one group. We can
for an N ×M matrix G such that element Giα = 1 if node i belongs to group α.
Note that

Nα =∑
i

Giα

is the number of nodes in group α. Also, because every node is in exactly one
group we have ∑

α
Giα = 1.

We can use the matrix G to determine whether two nodes i , j are in the same
group. Using

Di j =
∑
α

GiαG jα

we have Di j = 1 if nodes i and j are in the same group (not if i = j ). We could
also write in matrix notation

D = Gt G.

The matrix D is a block diagonal matrix, with blocks corresponding to the dif-
ferent groups. Let’s now count the number of links internal to groups:

Linternal = ∑
i j

Ai j Di j

= ∑
α

∑
i j

GiαAi j G jα

= ∑
α

(
G t AG

)
αα

= TrE

where
E =G t AG .

The elements of matrix E are the number of links between groups

Eαβ =
∑
i j

GiαAi j G jβ.
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In general we are interesting in fractions of links. The total number of links
in the network is given by

L = ‖A‖ =∑
i j

Ai j

Say we measure a fraction by

linternal =
TrE

‖A‖ = 0.75%

What does that mean? What should we compare this to? If we want to show
that there are significantly more links between individuals of the same group
then we compare to a random scenario in which we assume that an individu-
als links is placed at random. What is the number of links that exit a group α?
that is given by

Lα = ∑
β

Eαβ =
∑
β

∑
i j

GiαAi j G jβ

= ∑
i j

GiαAi j
∑
β

G jβ

= ∑
i

Giα
∑

j
Ai j

= ∑
i

ki Giα

Let’s say we pick one of these links at one end and ask how likely the other link
is going to be also in α. That is just the ratio

Lα/‖A‖
So we expect to have

E 0
α = Lα× Lα

‖A‖
links internal to groups if links are wired at random. So we get

E 0 = 1

‖A‖
∑
α

∑
i , j

ki k j GiαG jα

= ∑
i j

ki k j

‖A‖ δi j
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as the expected number of links internal to groups if their links are connected
at random. So if the groups significantly determine the way things are linked
we define the difference

Q =∑
i j

(
Ai j −

ki k j

L

)
δi j

with
δi j =

∑
α

GiαG jα.

The quantity Q is called modularity. and the matrix

Bi j = Ai j −
ki k j

L

is known as the modularity matrix. The modularity matrix has the interesting
property of ∑

j
Bi j = 0.

If Q = 0 then the system is randomly mixed. If on the other hand Q > 0 then
there’s more internal links than expected by chance and the groups mix as-
sortatively. If Q < 0 then they mix dissortatively. In practical applications one
devided the by the total number of links so

Q = 1

L

∑
i j

(
Ai j −

ki k j

L

)
δi j

For the network of red and blue nodes we get a modularity of about Q = 0.38.

1.14.2 Node and link averages

Let’s assume we have some quantity xi associated with each node in a net-
work. Obviously it sometimes makes sense to compute the average over all
nodes

〈x〉N = 1

N

∑
i

xi
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Figure 1.33: A simple network with scalar values attached to each node.

In networks it’s sometimes also meaning full to average over the set of links,
obviously if for instance the links are weighted we would compute something
like the average weight

〈w〉L = 1

L

∑
i j

wi j .

Sometimes we would like to average node properties over the ensemble of
links. For example we would like to know what is the average of the quantity x
across the set of links. It sounds like this would be the same as averaging over
the set of nodes but it is not. Let’s look at the example in Fig. 1.33. We have 5
nodes and values x1 = 4,5,9,2,5 associated with each node. Then obviously

〈x〉N = 1

5
(4+5+9+2+5) = 25

5
= 5

Let’s now build the set of links and treat those as an ensemble. In other words
let’s pick a link at random from the network and pick a random end and ask
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what’s the average. The set of links (xi ,x j ) is given by

(i , j ) : (xi , x j )

(1,2) : (4,5)

(2,1) : (5,4)

(2,4) : (5,2)

(4,2) : (2,5)

(1,4) : (4,2)

(4,1) : (2,4)

(3,4) : (9,2)

(4,3) : (2,9)

(4,5) : (2,5)

(5,4) : (5,2)

The average value of xi accross the ensemble of links is thus

〈x〉L = 1

10
(2×4+2×5+9+4×2+5) = 40

10
= 4

which is different from the average over nodes. This means that if we pick a
node at random the average of x is different from when we pick a link and one
of it’s connected nodes at random. From the above table we see that

〈x〉L = 1

L

∑
i

ki xi

This is intuitively clear because each node i contributes ki copies of xi to the
set of links. We can also write this as

〈x〉L =
∑

i ki xi∑
i ki

.

An interesting consequence of this is if we let the quantity xi be the degree
of the node ki . That means that the average degree of a node connected to a
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randomly chose link is

〈k〉L =
〈

k2
〉

N

〈k〉N
≥ 〈k〉N

and is always larger than the average computed across the set of nodes.

1.14.3 Mixing by scalar quantities

How can we determine if nodes of propoertiy xi are likely to be connected to
nodes with the same xi or in a similar range. Again we focus on a link i ↔ j
that connects two nodes i and j . First let’s compute the mean value of xi for
all link:

〈x〉 = 1

L

∑
i

ki xi

Let’s now look at the covariance of x by summing over all the links in the net-
work

C (x) = 1

L

∑
i j

(xi −µ)Ai j (x j −µ)

= 1

L

∑
i j

Ai j xi x j −µ2

= 1

L

∑
i j

Ai j xi x j − 1

L2

∑
i j

ki k j xi x j

= 1

L

∑
i j

[
Ai j −

ki k j

L

]
xi x j

which looks almost like modularity, except for the factor xi x j instead of δi j .
This is a covariance. Deviding by the variance

V (x) = 1

L

∑
i

ki (xi −µ)2

gives the assortativity coefficient

r = C (x)

V (x)
=

∑
i j

[
Ai j −ki k j /L

]
xi x j∑

i j
[
kiδi j −ki k j /L

]
xi x j

.
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This number is restricted to the range [−1,1]. If r = 1 the network is perfectly
assortative and if r = −1 is is perfectly dissortative. if r = 0 then the values of
xi at the end of links are uncorrelated.

1.14.4 Mixing by degree

If our quantity of interest is the degree itself the assortatitivy coefficient of de-
gree is

r = C (x)

V (x)
=

∑
i j

[
Ai j −ki k j /L

]
ki k j∑

i j
[
kiδi j −ki k j /L

]
ki k j

.

1.15 Software

For most of the networks that we will look at we will use the software package
Gephi. Gephi displays network and can do basic computation, filtering and
ranking of nodes and links in network. In order for Gephi to work, it needs
to have access to network data that is provided in network files. There are
different standards for writing network data into a file.

1.15.1 Comma separated link table (csv)

this is the easies format for a network that Gephi can read. Say we have a net-
work of N nodes and L links. We can store the connectivity in of the network
in a table in which each row represents a link from i to j , so each row just
contains the comma separated indices of the origin and the destination of the
link. Gephi will ask whether this is supposed to be a directed or an undirected
link. if the links have weights, these can be given as a third value in each row.

1.15.2 GML

This is a fairly old but widely used standard for encoding graphs. The prob-
lem with only providing a link table is that it is difficult to provide information
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about nodes. For instance labels, locations and other node specific informa-
tion. The link table is really only about links. the GML (graph mark up lan-
guage) and other standards solve this problem this way.

The data contains two blocks of information

• Block 1: Information about nodes

• Block 2: information about links

The whole GLM standard is a nested structure of objects. Fig. XX shows a typ-
ical example of such a structure. The outmost object is the

• GRAPH: this can hold some information, such as whether the graph is
directed or undirected

GRAPH contains a list of

• NODE objects. These contain some information about the nodes. The
most important is the ID, that uniquely identifies the node. Additional
information is the LABEL and the X,Y, and Z coordinates.

GRAPH also contains a list of

• EDGE objects. These are more complicated, they contain a SOURCE and
a TARGET property. The values are the Node IDs. There’s also te VALUE
tag, that encodes the weight of the link.

1.15.3 Graph Document Format (GDF)

This is very similar and has become for popular, because it’s easier to generate
files in this format. This format has also two blocks, one corresponding to
nodes and one to their links. Each block starts with a definition of what a node
and a link is:

• nodedef> ......

• edgedef>......
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All that is required for the node-definition is the NAME, which is also used as
an id, and for the link definition node1 and node 2. So For instance this is a
simple defintion of a network
nodedef> name INT
1
2
3
4
edgedef> node1, node2
1,3
4,4
2,1
3,1
The clue about this syntax is that one can provide additional information

and in the definition line say what that would be so this here is another exam-
ple:
nodedef> name VARCHAR,age INT,label VARCHAR
john, 23, idiot
mary,3,newborn
horst,66,guy
inge,66,horsts wife
edgedef> node1, node2
john,mary
horst,horst
horst,inge
horst,john

1.16 Algorithms

1.16.1 Recursive Algorithms

Many algorithms useful network analysis are most effectively programmed
rescursively. That means, the algorithm generally is defined by a function that
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calls itself until a particular condition is met. So for instance if we want to
compute the power of 2, i.e. 2k we could do this in a for loop

• x = 2

• for i = 1 to k-1; x=2*x; endfor

Alternative we could write a function that calls itself recursively

• function x=power2(k)

– if(k), x=2*power2(k-1); else x=2; end

• end

This function works backwards.

1.16.2 Finding Components in a network

Although we discussed earlier what components of a network are (each node
in a component must be reachable by any other node in the component), we
have not discussed how to find components in a network given by the adja-
cency matrix A. We can do this recursively by burning through the network.

1. label all nodes as belonging to no component

2. chose a random initial node

3. associate it with component 1

4. chose all it’s neighbors that have not been associated with
a component

a) if there are no such neighbors you are done with component
1

b) for each of the neighbors go back to step 3

5. remove all the nodes that belong to component 1 from the network
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6. go back to 2

this process burns succesivly through all the components as is illustrated in
Fig. XX

1.16.3 Finding Shortest paths

Finding the shortest paths is almost as easy as finding component. First, let’s
assume that we have a network that consists of only one component, so we
can reach any node from any other node. Finding the shortest paths is very
intuitive when using Dijkstra’s algorithm. It works like this. First we pick a root
node from which we would like to compute the shortest paths to all the other
nodes. We define a distance D that we associate with each node, which is to
measure the distance to the root node. So we fix Di = 0 if i is the root node
and D j =∞ for all the other nodes. Now comes the algorithm

1. Find the neighbors of the root node, call this Ui

2. Increase the temporary distance D to D +1;

3. Compare all the neighbor distances D j of nodes j ∈Ui to D ( at the first
step all the neighbors have D =∞)

4. If D < D j then set D j = D , and record the parent node i for all the nodes
in Ui , If no such nodes exist, exit

5. Treat all the remaining neighbors as new root nodes and go back to step
1

Successively this algorithms goes through the network in shells from neigh-
bors to next neighbors and so forth, but it will only proceed to neighbors that
are “farther away”. As is shown in Fig. XX.

1.16.4 Randomizing a network

When we talked about assortativity we had to compare real networks to those
that we obtain if we randomize their connectivity keeping the degrees of the
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nodes the same. Often this needs to be done with a computer. Intuitively it’s
clear that we we cut each link into two ends we get two replicas of the set of
nodes each one having the same set of open links as shown in Fig. XX. Graph-
ically we randomize by just connecting links randomly from left to right. In an
algorithm this is best done by permutating a link list. Say we have an undi-
rected graph represented by a link list

i j

i1 j1

i2 j2

i3 j3

... ...

Then all we have to do to randomize the network keeping the degree the
same is to shuffle the second column in the link list. The degree of each node
stays the same this way because say i1 = i5 = i7 = 9 corresponds to node 9 with
degree 3, then shuffling the second column is not going to change the degree.
The only thing we have to make sure of is that no self-links are generated by
shuffling and multiple links between a given pair of nodes. If self- and multiple
links are permitted, that’s ok. If not then the shuffling can generate a self-
loop and multiple links. However, in large sparsely connected networks that
usually does not impact that statistics. If one has to make sure that no self- or
mutliple links emerge by randomization one needs to be a bit more careful in
randomization: One can do this sequentially. Starting with node i and degree
ki one picks from the set of link stubs ki that belong to different nodes. This
avoids self-links and multiple links and one marks these links as taken. then
one proceeds to the next node i +1 and does the same until all stubs are taken.
If the algorithm runs into a dead end (one is only left with stubs belonging to
one node), one starts over again. It is not guaranteed that this converges in
acceptable times.
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2 Statistical Analyis of large scale
networks

In this chapter we will be discussion applications of the analysis presented in
previous chapters to large scale networks. By large scale networks we mean
networks that have thousands of nodes such that a focus on single nodes or
links and their role in the entire network is negligible. Rather the information
on the structural and topological features is given by the distributions of prop-
erties such as the distribution of degree or other centrality measures. Also,
some of the interesting properties of complex networks only emerge in large
scale networks. Examples of large scale networks are given in Table XX

2.1 The small world phenomenon

On of the most celebrated properties of many real world networks is their
small world property. A network is small world if, loosely speaking, the short-
est path between two randomly chose nodes is much smaller that one would
expect.

2.1.1 The shortest path on a lattice

Let’s first consider the behavior that we are used to when wee think of lattices.
Let’s assume that we have a two dimensional lattice with N × N nodes that
has a linear size L. if we randomly pick two nodes i and j we can compute a
shortest paths that connects them. That path is most likely going to be d < L.
The question is now how the typical path length scales with the size of the
system. In the two dimensional lattice we will find that

d ∼ L
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which also means that
d ∼ N 1/2

because
N ∼ L2

In fact in a d−dimensional lattice we find that the typical shortest path be-
tween two nodes scales with the number of nodes

d ∼ N 1/d .

Fig. XX illustrates this, again, for the great planar triangular network. The
mean diameter is was computed for network sizes ranging from 10 to 1,000
nodes. The networks are shown in the figure, as well as the mean shortest
path as a function of N the solid line indicates the scaling

d ∼
p

N (2.1)

As expected the actual scaling is consistent with the planar architecture of the
network. Let’s now compare this to another network. Let’s keep the average
degree

k0 ≈ 6

of the random planar graphs and generate a completety random network with
the same degree for each of the chose network sizes choses previsouly for the
planar graphs. Fig XX shows that the behavior 2.1 is no longer visible in the
random network. In fact we will later show that in the random graph we typi-
cally find a scaling relation

d =∼ log N

that means if we square the number of nodes, we only double the mean short-
est distance! We can thus expect in networks that appear to have no metric
imprint on the topology to see this logarithmic scaling.

This notion was tested experiementally by one of Milgrams famous experiements
in the 1960s in which we wanted to measure how many steps it takes by means
of aquaintance links in a social network to go from one randomly chosen per-
son to another.
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2.1.2 Milgrams experiment - Six degrees of separation

In its first experiment, Milgram asked randomly selected people in Nebraska
to send letters to a distant target individual in Boston, identified only by his
name, occupation and rough location. The letters could only be sent to some-
one whom the current holder knew by first name, and who was presumably
closer to the final recipient. Milgram kept track of the paths followed by the
letters and of the demographic characteristics of their handlers. Although
the common guess was that it might take hundreds of these steps for the
letters to reach their final destination, Milgram’s surprising result was that
the number of links needed to reach the target person had an average value
of just six. More recently, a similar experiment conducted by Dodds on e-
mail exchanges successfully reproduced Milgram’s experiment, but capitaliz-
ing on the globalization of the Internet. The e-mail passing messages, indeed,
completed enough chains as to allow for their through statistical characteriza-
tion. Milgrams experiment then coined the phrase “six degrees of separation”.
Fig. X show the distribution of actual path lengths in a similar experiement
performed in 2003 not using actual mail, but email. The distributions of path
lengths is consistent with those measure by Milgram 50 years ago.

2.1.3 How many degrees of separation today?

Milgrams experiment largery focused on the United States in the 60s. The
overall population of the US at that time was about 180 million. If the rela-
tion

d ∼ log N

is true for a social network then we have

d = A log N

where A is a proportionaly constant that we can estimate with Milgrams ex-
periement.

A = d = 6

log N = 27.32
= 0.218
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So worldwide he have now 7×109 people so we would expect the mean degree
of separation to be

d = 0.218× log7×109 = 0.218×32.704 = 7.1296

not a significant increase!

2.1.4 Geocaching Experiment

Here’s another, more personal, example: Geocaching.

2.2 Topology and statistics

2.2.1 Basic Statistics

The easiest way to get an overall impression of the structure of a large scale
network is by computing averages of the various quantities we discussed so
far, e.g. (assuming an undirected and unweighted network):

• mean degree 〈k〉
• relative size of the largest component s = Ng c /N

• mean shortest path 〈l〉 (also known as the diameter of the network)

• the clustering ceofficient C (the fraction of 2 step paths that are trian-
gles)

• the average local clustering coefficient 〈c〉
• etc.

Typically, these numbers are best understood in comparison to other networks.
Table 2.1 provides these quantities for a number of known networks.
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Network N L 〈k〉 s 〈l〉 C 〈c〉
Film Actors 449,913 25,516,482 113.43 0.980 3.48 0.20 0.78

Physics Coauthorships 52,909 245,300 9.27 0.838 7.57 0.15 0.34
Power Grid 4,941 6,594 2.67 1.0 18.99 0.10 0.08

Internet 10,697 31,992 5.98 1.0 3.31 0.035 0.39
Metabolic Network 765 3,686 9.64 0.996 2.54 0.09 0.67
Protein Interactions 2,115 2,240 2.12 0.689 6.80 0.072 0.071

Table 2.1: Examples of global statistical features of large scale networks.

2.2.2 Statistical Distributions

More insight can be gained by investigating not only mean values but entire
distributions of centrality measures for instance. Simply put, we have a long
list, a set, of quantities and we measure histograms. So for instance we may
have a large network with N nodes and L links we can ask, what’s the fraction
of nodes nk that have a degree ki = k. Mathematically what we do is we form
the ensemble of degrees

{k1, ....,kN }

and the just count all the ones that have a degree k, Nk and then simply com-
pute

nk = Nk /N .

And then we plot nk vs. k. This is particularly easy because the degree is a
discrete variable, ki ∈N. Not all measures are discrete, for example the weight
wi j of a link may be best considered a rational number, or the eigenvector
centrality, or other quantities. Let’s take the example of links. Let’s say we have
L links and again form the set

{wi , ....., wL}

where we now label the links with just one index (unlike we usually do with
two indices). Now if wi are non integers, with certainty each weight appears
only once in the ensemble. Therefore we cannot ask what’s the fraction of links
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that has a weight w . We rather have to ask what’s the number L(w,∆w) of links
that are in the interval

[w, w +∆w]

or
[w −∆w/2, w +∆w/2].

and the fraction l (w,∆w) is just defined according to

l (w,∆w) = L(w,∆w)

L

We can now cover the whole range of weights by successive intervals

[wk , wk +∆wk ]

with
∆wk = wk+1 −wk

not necessarily the same and wk+1 > wk and w0 = 0. This way we make sure
that every weight falls into one interval.

2.2.2.1 Normalization

If we are counting discrete elements such as degree the normalization just
reads

1 =
∞∑

k=0
nk

In the continous case we have

1 =
∞∑

k=1
l (wk ,∆wk )

2.2.2.2 Continuous approximations and densities

The quantity l (wk ,∆wk ) is the fraction of links that falls into the range [wk , wk+
∆wk ]. We can define the probability density

p(wk ) = l (wk ,∆wk )

∆wk
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The normalization condition is given by

1 =
∞∑

k=1
p(wk )∆wk ≈

∫ ∞

0
p(w)d w.

Sometimes we assume that the underlying probability density p(w) is contin-
uous but we only have a finite sample and access to the empirical density

p(wk ) = l (wk ,∆wk )

∆wk

Then we hope that the larger the sample the better the agreement

p(wk ) ≈ p(w).

2.2.3 Degree Distribution

The most prominent and usually the first distribution one investigates in undi-
rected unweighted networks is the degree distribution

pk = probability that a node has degree k

2.2.4 Mean degree

Remember that if we have a set of degrees

{k1, ....,kN }

we compute the mean degree as

〈k〉 = 1

N

∑
i

ki

Intepreting the relative frequency nk as the probability pk that a node as a link
we can also of course write

〈k〉 =∑
k

k pk
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2.2.5 Higher Moments

While the mean 〈k〉 informs about a typical value, the variance

Var(k) = 〈
(k −〈k〉)2〉≥ 0

gives a measure of how much a degree is expected to be away from the mean.
Since

〈
(k −〈k〉)2〉 = 〈

k2 −2k
〈

(k −〈k〉)2〉+〈k〉2〉
= 〈

k2〉−2〈k〉2 +〈k〉2

= 〈
k2〉−〈k〉2 ≥ 0

the second moment tells us a bit about the variability in the distribution pk .
Note also that because of this the second moment is always larger or equal to
the square of the first moment. The second moment can be computed either
by 〈

k2〉= 1

N

∑
i

k2
i

or using the probability pk : 〈
k2〉=∑

k
k2 pk

2.2.6 Coefficient of Variation

A useful quantity that to measuring the variability in a quantity is the coeffi-
cient of variation. This, unlike the variance has no units and quantifies the
relative variability in the data (i.e. in units of the mean)

CV (k) =
√〈

(k −〈k〉)2〉
〈k〉 .
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Figure 2.1: Three classes of degree distributions p(k).

2.3 Types of degree distributions

Generally we can classify degree distributions that occur in real systems into
three categories. Although finer categorizations exist, broadly speaking there
are these types, as illustrated in Fig. 2.1.

1. The variability in degree is small and centered around a typical value

2. The degree distributions decreases as k is increased, the larger the de-
gree the small the likelyhood of occurance. The curve drops off suffi-
ciently fast such that degrees are not observered that are orders of mag-
nitude larger than the expected degree.

a) if for instance say p(k) behave like

p(k) ∼ ek2/σ2

for large k, then the probability of occurance of a value k = 10σ is
e−100 with is pretty much never.

3. The degree distribution decreases asymptotically but does so weakly,
such that a long tail in the distribution exists. An example is a power
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Figure 2.2: p(k) of four different network, the planar network, a random net-
work, the US Air transportation network and the snapshot of the
internet.

law

p(k) ∼ 1

k2

Again if we were to ask how does the probability decrease if we go to a
value of 10k that is going to be 1/100 which is small but a lot bigger than
e−100. It turns out as we will see, that this makes a huge difference.

2.3.1 Examples

Fig. 2.2 show three types of examples of degree distributions. The first one is
p(k) for a planar random triangular graph. The second is a random network,
the third the US air transportation network and the fourth is a snapshot of the
internet. The planar graph has nodes with degree that fluctuate a little around
the average.
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2.3.2 Treating the degree as a conitnuous variable

Of course the degree is a discrete variable k = 0,1,2, .... and the distribution is
on this discrete sets of values, such that pk is the probability of a node having
a degree k and

∞∑
k=0

pk = 1

In many cases the range over which acutal degrees in a large scale network are
distributed is very large ranging over many orders of madgnitude such that
the spacing between degrees (which is trivially equal to 1) is much less that
this range. in this case we can think of the degree distribution as a function
over a continuous domain of numbers for example

p(k) = pk∆k

with ∆k = 1 and ∫ ∞

0
p(k)dk = 1

Strickly speaking this is only symbolic because there’s not ∆k → 0 happening.
The logic behind this is merely that one can use methods from continuous
variable calculus instead of having to deal with sums which is more cumber-
some in many cases. The intuition about this is that if we have nodes with a
degree that varies between say 100 and 10000 we really do not care whether
452 nodes have degree 1402 or whether 452 nodes have degree 1401. They sta-
tistical structure doesn’t change. Because of this we will think of p(k) for those
networks that have a broad distribution as a continuous quantity.

2.3.2.1 Log-Log plots and log linear plots

One way to distinguish in particular between a fast and a slow decrease for
large values of k, for instance if we want to distinguish between a power-law
behavior

p(k) ∼ 1

k1+γ
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Figure 2.3: Degree distributions on a log-log scale can reveal a power law
structure.
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and for instance an exponential decrease

p(k) ∼ e−αk

is to plot p(k) on a double logarithmic plot. that is plotting log p vs. logk. If
we are dealing with a power-law we get a line

log p = log A− (1+γ) logk

which is a line with negative slope 1+γ. Therefore, we can also measure the
exponent γ if the resulting plot is indeed a line or approximately a line. Fig. XX
shows the different p(k) on a double logarithmic scale. We see that the two
real networks seem to be following a linear shape and we might conjecture
that the degree distribution is a power law. We see also that in these plots there
is a lot of statistical wiggle for large values of k which makes an estimation of
the exponent γ difficult.

2.3.3 Cumulative distributions

Therefore it is sometimes better, not to plot the relative frequency pk or alter-
natively speaking the probability density function p(k) but rather the proba-
bility P (ki ≥ k) that the degree of a node i is greater than a reference value
k. Mathematically it is stragihtforward to compute this probability if we have
the pdf (probability density function) p(k). Assuming for a moment that k is a
continuous variable then

P (ki ≥ k) =
∫ ∞

k
p(k ′)dk ′.

so therefore P (ki ≥ 0) = 1 and and P (ki ≥∞) = 0.
Let’s now be more precise and account for the fact that k is discrete and we

have a relative frequency pk . Then the probability that the degree of a node is
larger than k is given by

Pk =
∞∑

l=k
pl

101



2 Statistical Analyis of large scale networks

One way of computing this easily from data is the following. Let’s assume we
have a set of nodes indexed i and each has a degree ki . We can sort the array
of degrees such that

k1 ≤ k2 ≤ ... ≤ ki ≤ .... ≤ kN .

If we pick a reference value km+1. It will be somewhere in this sequence

k1 ≤ k2 ≤ ... ≤ ... ≤ km ≤ km+1.... ≤ kN .

Then m degrees in the sequence are smaller or equal to km . Thus, the proba-
bility that a nodes degree is smaller than k is approximately given by

Qm = m

N

and the probability that a node has a degree higher than k is given by

Pm = 1− m

N

Thus plotting vector
km = {k1,k2, ....,kN }

against the vector

Pm = 1− 1

N
{1,2,3,4...., N }

that is the pair
(km ,Pm)

will approximate the probability that a node will have a degree larger than km .
This is easily computed by just sorting the degrees of all nodes and plotting
them against the array

1−1/N ,1−2/N , ...,1−m/N , ...0

Fig. 2.4 shows this estimated cumulative probability for the different net-
works. The nice thing about this procedure is that we make use of every data
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Figure 2.4: The cumulative degree distribuion P (ki > k) for the US air trans-
portation network. Both networks show a range on which the func-
tion is a power law with exponents µ ≈ 1 indicated by the red
dashed line.

point we have. What can we learn from this procedure? We can also see if p(k)
is a power law. If for instance

p(k) = A/k(1+γ) for k > k0

then

P (k > k0) = A
∫ ∞

k0

dk

k1+γ ∼ 1

kγ

which means that this is also a power law and should be a straght line on a log
log scale. Thus we see that the internet has a power-law degree distribution.
The ship network, which we thought might have actually curves down, so is
probably not a true power law.

2.3.4 Comparing different degree distributions

Sometimes it is essential to compare the degree distributions of different net-
works to investigate whether they have the same shape or not. In principle, we
can just plot them in one figure. However, since the mean degree is very dif-
ferent in different networks, the curves for p(k) or P (k) even though they may
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Figure 2.5: Power-law or power-law-like degree distribution p(k) of various
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have a similar shape, do not coincide. Therefore one often rescale the degree
k by the median or mean degree and plots the distribution of those rescaled
quantities.

2.4 Scale free networks

So what’s all the fuss about power-law degree distributions. What are the im-
plications? They are profound, it turns out. To understand this, we have to
understand power-law in statistical distributions in general. Let’s assume that
we have a probability distribution for a random variable X > x0 > 0 and let’s
say we call this probability distribution p(x). One of the most fundamental
properties of probability is the law of large number. a consequence of which
is the following. Say we draw a sequence of random numbers from p(x) and
let’s call this sequence

Sn = {X1, ...., Xn}

Like rolling a die n times. Then we can compute the average

〈X 〉n = 1

n

∑
i

Xi

Then one of the things we would expect is that as we increase the sample size,
this average converges to some constant number

lim
n→∞〈X 〉n = 〈X 〉

That is just plain intuition of course this limit is

〈X 〉 =
∫ ∞

x0

d x x p(x).

Now let’s assume we have a power law

p(x) = µ

x1+µ

one the intervale [1,∞], so ∫ ∞

1
d x p(x) = 1.
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What would be the average that we would get if we were to compute the sum
above? Let’s see ∫ ∞

1
d x x p(x) =µ

∫ ∞

1

d x

xµ
= µ

µ−1

if µ> 1. If on the other hand 0 <µ≤ 1 then the integral diverges so the average
is infinite. We may expect this never to occur in reality and just be a mathe-
matical peculiarity. But it does have real significance. Because it means, even
if I have a finite sample Sn computing the average

〈X 〉n = 1

n

∑
i

Xi

simply does not converge before I reach the full sample size n. Although the
sum of course does give a number, it carries no information because if I were
to extend my sample, say double it I’d get a different number. Fig. XX illustrates
this. Let’s first assume we have a sample of random numbers drawn from an
exponential probability distribution

p(x) =αe−αx .

We can check that ∫ ∞

0
d xp(x) = 1

The expectation value is given by

〈x〉 =
∫ ∞

0
d x x p(x)

= α

∫ ∞

0
d x x e−αx

= α
d

d(−α)

∫ ∞

0
d xe−αx

= α
d

d(−α)

1

α

= α
1

α2 = 1

α
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Now we draw N random numbers from this distribution and compute the em-
pirical average

〈X 〉N = 1

N

N∑
i=1

Xi

as a function of N . In Fig. XX we see that this average converges to the the-
oretical mean, if α = 1 this is 〈x〉 = 1. After a few hundred samples we are
pretty close. If we do this for a power law described above for an exponent
µ < 1 the empirical average does not converge. In fact, with regular repitions
some number are drawn that are as large as the entire sum producing large
excursions of the average. As the sample size increases these excursions do
not stop and sustain not yielding a plausible average value. A consueqence of
the large tail in the power law. Averages hav thus no meaning when power law
distributions are involved.

2.5 Weighted Network

Another important source of scale-free-ness is seen in many weighted, real
world networks. Recall that these are networks that have a weight Wi j associ-
ated with each link. This adds another layer of complexity and the first thing
one can look at, is the statistics of the weights given by the distribution p(w)
and the capacity or strength of a node

p(φ) where φi =
∑

j
W j i .

In many real world networks, the capacity as well as the weights exhibit scale
free distributions that have no well defined mean or variance.

Fig. 2.6 show the weight and capacity distributions of various real world net-
works that all exhibit a broad distribution in both quantities.

2.5.1 Correlations of observables

Another universal feature is the connection between degree and capacity. In
particular, transportation networks show this correlation. One can easily see
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capacities p(φ) in real world weighted networks.
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this correlation when plotting the degree ki or a node against the capacity φi .
Although scatter plots like this show, as their name suggests, a lot of scatter,
an overall trend can be seen in such plots. For instance, in many networks one
observes a typical scaling relation

k ∼φξ

where the exponent 0 < ξ < 1. For instance many transportation networks
have a scaling exponent ξ≈ 0.6 which means that if I double the total amount
of traffic going into a node I don’t double the degree. That in turn means that
on average the links must become stronger.
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We have seen in previous chapters and sections how real world networks can
be characterized using centrality measures and in large networks their statis-
tics. In this chapter we will investigate network models. Those are networks
that are designed according to some basic rules such that their properties cap-
ture some of the properties or real world networks.

When we visualize some networks, particularly large networks they look
random in the sense that we cannot predict whether two nodes are linked
or not. Therefore the most important class of models used in complext net-
work research are networks that possess some sort of randomness or random
compontent in their construction mechanism to mimic the degree of unpre-
dictability in real world networks.

3.1 Random Networks

Before we discuss specific random networks we have to get some of the fun-
damental ideas right. Obviously a random network g is a realization of some
process G . The process or rule generates a random network

G → g

The rule is fixed, but it can generate a number of different random network
g1, g2.... Just like the fixed process “rolling a die” generates different outcomes
1,2,3,4,5,6. The foundation of random network theory is that we want to deal
with something that is “fixed” so instead of considereing single network g we
consider the rule that generates them, G . This is why: Let’s assume we have
some rule G that generates a network g . Typically, we cannot infer the rule
G from just a single g as much as we cannot infer the rule “throwing a die”
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from getting a 3 on the top face of a die. Because, however, we cannot analyse
rules so well and we would like to infer them from networks, we have to look at
ensembles G of networks that are generated from the rule. For instance if one
throws a die many times, make two observations: 1.) we only get the numbers
1−6 and we get them with equal probability of 1/6. IF we have that we have
all that we need to know. So for networks we have an ensemble of networks

G = {gi }i=1,....Ω

where Ω is the total number of possible networks, sometimes that is infinite,
and an assosiated proability measure p(gi ) for each network that tells us how
likely it is to observe gi .

3.1.1 Ensemble averages

If we have a process G and the set of networks it can generate G plus the prob-
ability p(g ) for each g ∈G we can compute averages. Let’s say we have a func-
tion F that computes some property of a network g , taking it as an argument,
for instance the diameter or the maximum degree or the global clustering co-
efficient, so

F = F (g )

is some quantity compute from g . There are two possibilities for computing
an average

1. We either generate an long sequence g1, ....gn using the process G and
compute

〈F 〉 = lim
n→∞

1

n

n∑
i=1

F (gi ).

2. We can make use of the probability of p(g ) and the set of all possible
outcomes

〈F 〉 =
Ω∑

i=k
F (gk )p(gk ).
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Note the important difference between 1.) and 2.) is that in the first version we
have to sample and infinite numbner of times, and in the second we just have
to some over the possible number of networks g , the drawback being that we
need to know the probability p(g ) for every g ∈G .

3.1.1.1 Example

Let’s look at the following process. We generate a network of 4 nodes and 4
links in which each of the links is drawn from the total set of N (N −1)/2 = 6
possible links at random. So we have the following link set

1 ↔ 2

1 ↔ 3

1 ↔ 4

2 ↔ 3

2 ↔ 4

3 ↔ 4

So how many networks are in G? That is equal to the number of possibilities
to pick 4 links from the set of 6 links so

Ω=
(

6
4

)
= 6!

4!2!
= 15.

And if everything is picked at random the probability for each of the 15 net-
works to be generated by the process is

p(g ) = 1

Ω
= 1

15

So, for instance the adjacency matrix

A =


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0
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corresponds to one of those networks generate this way. In fact this network
has a triangle and one dangling leaf node (3). In G there are 12 networks of
this type and 3 networks in which the 4 nodes are connected in a 4-loop. Let’s
name all these network G(4,4) meaning that we have 4 nodes and 4 links. What
would be the average degree 〈k〉 expected for a node in a network drawn from
this ensemble? It’s given by

〈k〉 = 1

15
[3×2+12×k∆]

the term 3× 2 corresponds to the three networks that have a four-loop and
every node has degree 2 and the second term corresponds to 12 networks that
have a triangle in which the mean degree of each network is given by

k∆ = 1

4
(1+2×2+3) = 2

so

〈k〉 = 1

15
[3×2+12×2] = 2.

That was complicated and obvious. Each of the networks has 4 nodes and 4
links to the average degree of every network has to be 2N /L = 2.

But how about the clustering coefficient? In the 12 networks that have a
triangle the global clustering coefficient is C∆ = 1/3. In the three networks
with a 4-loop the clustering coeff. is 0. So the mean clustering coeff. for the
entire ensemble G is given by

〈C〉 = 1

15

[
3×0+12× 1

3

]
= 4

15
< 1

3
.

This is important, because if we were to generate a network g by the process
G and the clustering coefficient of that specific g will not be equal to the clus-
tering coeff. of the entire ensemble.

3.2 The ensemble G(N ,L)

The example above is a special case of G(N ,L) the ensemble of networks that
have N nodes and 0 ≤ L ≤ Lmax links where Lmax = N (N −1)/2. The number of
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networks in G(N ,L) is given by

Ω=
(

Lmax

L

)
=


(

N
2

)
L

 .

Typically, this is a large number, For N = L = 10 we haveΩ= 3,190,187,286.

3.3 Erdős-Rényi Random Networks

Very much related to G(N ,L) is the ensemble G(N , p). This ensemble is gen-
erated in a slightly different way. Instead of fixing the number of links L we
take the entire set of links and pick each with probability p. Generally, every
network g constructed this way may have different number of links L. the en-
semble G(N , p) is called the ER-network. How many networks are in this set?
Since any combination of links has a finite probability the entire set has

Ω= 2Lmax = 2N (N−1)/2.

The probability of generating a network g with L links is not uniform accross
G , for instance the probability of generating a network with no links and a
network with all links present is very small compared with networks with in-
termediate values since a lot more combinations exist of this type. What is the
probability of generating a network with L links? This can be obtained by the
following reasons. First, the probability of picking L links and not picking the
remaining Lmax −L links is

pL(1−p)Lmax−L = pL(1−p)

 N
2

−L

But we can permute the L links so we get

P (N ,L) =


(
N
2

)
L

pL(1−p)

 N
2

−L

114



3 Network Models

where P (N ,L) is the proability that a network g in G(N , p) has L links. This is a
binomial distribution, if we sum over L we see that the distribution is normal-
ized

Lmax∑
L=1

P (N ,L) = 1

With the same argument we can show that the degree distribution of a network
g ∈G(N , p) is given by

p(k) =
(

N −1
k

)
pk (1−p)N−1−k

3.3.1 Mean degree

If we want to compute the mean degree we can do the following. Given a net-
work with L links the mean degree is

k = 2L

N

of this particular network. The mean degree with respect to the entire ensem-
ble is therefore

〈k〉 = 2〈L〉
N

The mean number of links 〈L〉 is computed from the distribution P (N ,L), which
is the mean of the binomial distribution, so

〈L〉 = Lmax p

so the mean degree is

〈k〉 = 2Lmaxp

N
= p(N −1).

which makes sense. This is also what we obtain if we use p(k) given above.
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3.3.2 The local clustering coefficient

Remember that the local clustering coefficient is the probability that two neigh-
bors of a node are also connected. Since the probability of any link being there
is p that is also the probability that two neighbors of a node are connected to
the local clustering coefficient is

〈c〉 = p.

3.3.3 Diameter of G(N , p)

The diameter of an ER network can be roughly estimated just using the mean
degree k0 and the network size. If we take l steps away from a given reference
node, then the number of nodes we can reach is rouchly given by

n(l ) ≈ k s
0

At some point n(l ) is going to be of the order N and saturate, the diameter is
then approximately the number of steps we need to take until this happens so

k l
0 ≈ N

which means that

l ≈ log N

logk0
∼ log N

This alone gives a handwaving argument for the small world nature of many
real world network.

3.4 The Poisson Random network

This is an important type of network obtained from G(N , p) in the limit N →
∞. In many situation we have large networks in which the typical degree

〈k〉 = p(N −1)
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is fixed, even if we keep increasing N . So a meaningful limit is N →∞ and p →
0 keeping the mean degree fixed. If we let p become very small, the binomial
distribution

p(k) =
(

N −1
k

)
pk (1−p)N−1−k

becomes

p(k) = 〈k〉k

k !
e−〈k〉

which is the Poisson distribution.

3.4.1 Implications

So we see that the ER Networks exhibit both, the small world effect and a van-
ishing local clustering coefficient has we increase N keeping the mean degree
k0 fixed. We might conclude from this that maybe both phenomena go hand in
hand, that vanishing local clustering coefficient implies the small world effect
and vice versa. We will shortly learn that this is not so. In fact, the small clus-
tering coefficient is actually a significant drawback of the ER network. Most
networks that possess small world characteristics do in fact have a large clus-
tering coefficient. Also, the Poissonian degree distribution is not a good model
for real world network which often have broad, e.g. power law degree distri-
butions. It is therefore plausible to develop a model that can generate an arbi-
trary degree distribution. Which lead directly to the...

3.5 Configurational Model

The idea behind this is the following. Say we have good reason to believe that
some function p(k) is a good model for a real world network that exhibits a
degree sequence

S = {k1, ....,kN }

One way of generating an ensemble of random networks with a degree distri-
bution consistent with S based on the assumption that p(k) is a good model
for te real network is by using the following process G :
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1. Generate a random degree sequence for N nodes

ki , i = 1, ...N

2. The total number of link stubs is given by

L =∑
i

ki

and if we connect the stubs (neglecting the emergence of self loops and
multi-links) we have

L = 1

2

N∑
i

ki

links in the entire network

3. We now randomly connect the stubs as discussed earlier and we get a
random network that is statistically indistiguishable from a network that
has a degree distribution consistent with p(k).

3.5.1 The probability of two nodes being connected

In the ER network, the probabilty that a pair of nodes i and j are connected is
constant, p. In the configurational model this is different. If node i ’s degree
is ki let’s first pick one of the ki stubs. If we randomly connect it to the other
stubs then with probability

q = k j /(2L−1)

this one link connects to j . Adding all these probabilities this gives

pi j =
ki k j

2L−1
≈ ki k j

2L

3.5.2 Self-loops and multi-links

One of the annoying properties of the configurational model is that by ran-
domly connecting stubs we autmatically create self-loops and multiple links
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between nodes. If we want to ingnore those, we have to make sure that in the
limit of large networks their effect is negligible. One can show, using the equa-
tion above that the number of multilinks and self-loops is proportional to(〈

k2
〉−〈k〉
〈k〉

)2

= const.

which means, it does not increase with network size as lonk as the moments
are constant. Thus the probabiliy of finding a self or multi-link vanishes when
N →∞.

3.5.3 Generating a configuration without self- or multiple
links

One way of going around this is the following. Let’s say we have a degree se-
quence

S = {k1, ....,kN }

and this sequence is drawn from a distribution p(k). We can now make use of
the expression

pi j =
ki k j

2L−1

and say that this is the probability that a link exists between i and j and

q = 1−pi j

that there is no such link. We can then define that

pi i = 0

and only throw the dice for the link i and j once. The drawback is that the re-
sulting network may not have the original degree sequence, buy an ensemble
generated like this has a p(k) consistent with S. That is actually not quite true,
only for large networks it is true. Nevertheless this is a better way of generating
networks with a specfied degree distribution.
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Figure 3.1: Watts-Strogatz small world network.

3.6 Watt-Strogatz Small World Networks

In one of the most cited scientific articles in network science Duncan Watts
and Stephen Strogatz designed a model in which they showed that one can
have a situation in which the local clustering coefficient is high and neverthe-
less the network is small world. The idea of the model is to find a way of going
from one well known extrem to another well known extreme using one pa-
rameter. Extrem one is a regular linear lattice on a ring in which are coupled
to their m nearest neigbors, so we have L = mN links in the network. This
regular lattice is not a small world network because the number of hops that
separate two randomly chosen nodes scales with the system size, so is of order
N . Likewise if we calculate the local clustering coefficient, because we have a
lattice, we typically get a clustering coefficient which is comparatively large

C0 =O(1)

because the local neighborhood is well connected in a regular lattice.
On the other hand in an ER network with the same number of nodes and
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Network N L 〈l〉 〈c〉 cER

Film Actors 449,913 25,516,482 3.48 0.78 2.5×10−4

Physics Coauthorships 52,909 245,300 7.57 0.34 1.7×10−4

Internet 10,697 31,992 3.31 0.39 5×10−4

Metabolic Network 765 3,686 2.54 0.67 0.0125
Protein Interactions 2,115 2,240 6.80 0.071 0.001

Table 3.1: Small world networks

links, we have a mean degree of

k0 = m

and an average clustering coefficient of

c ≈ m

N

which for large networks becomes very small, if say m = 4 and N = 1000. The
idea of the Watts Strogatz modell is this. We introduce a probability 0 ≤ p ≤ 1
and for each of the mN links in the network we do this. We rewire one end
of the link from a local neighbor to a randomly chosen node in the network,
thereby creating a shortcut to potentially distant locations. This way, if p = 0
we have our lattice and of p = 1 we have a random, ER like mode. The ques-
tion is of course how does the diameter of the network and the clustering co-
efficient depend on p. The fundamental result of Watts and Strgatz was even if
p is extremely small, the diameter L(p) decreases very rapidly with p whereas
the local clustering coefficient does not. In fact, L(p) very quickly drops and
unless p becomes very large C (p) remains constant. This resolved the issue
of many real networks having a large local clustering coefficient yet a small
diameter.

3.7 Static scale free networks

One way to generate scale free network with a power-law degree distribution
is just using the configuration model discussed above. Generating a degree
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Figure 3.2: Clustering Coefficient and Diameter in Watts-Strogatz small world
network.

sequence
S = {k1, ...,kN }

from a scale-free degree distribution p(k) and linking nodes i and j according
to the probability

pi j =
ki k j

2L−1
.

However, a power law in p(k) has the tendency to create lots of self loops be-
cause the hubs tend to connect to themselves effectively decreasing the de-
gree.

3.7.1 The Model by Goh et al.

Several other recipes to construct static scale-free networks, based on assum-
ing that a node has some intrinsic properties, have been proposed in the physics
community. In one model, each node i is assigned a weight (or fitness) fi = iα,
where i = 1,2, ..., N is the node index and α is a tunable parameter in [0, 1).
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Two different nodes, i , j are selected with probabilities equal to the normal-
ized weights

pi = wi∑
k wk

and pi = wi∑
k wk

respectively, and are connected if there is not already a link between them.
The process is repeated until mN links are made so that < k >= 2m. When

α = 0 one obtains a ER random graph. When α > 0 the graph obtained has a
power law degree distribution

p(k) ∼ 1

k1+µ

with an exponentµ= 1/α. Thus, by varyingα in [0, 1) one obtains an exponent
in the range1 <µ< 2.

3.8 Preferential Attachment Models

So far we’ve been discussing ways to analyse models and how to generate net-
works that resemble real networks to some extend. An entirely different class
of models goes a bit further by providing basic network growth mechanism
some of which yield networks that exhibit properties of real networks. These
are in this case emergent properties. One very famous mechanism can explain
the powerlaws we’ve been seeing in degrree distributions of many networks

p(k) ∼ 1

k1+µ .

Most of them go back to fairly old ideas. The first person to systematically
address this question has Herbert Simon in the 60’s. He borserved that power-
law distributions in general are seen everywhere, biology, sociology and eco-
nomics. He invented the idea of cumulative advantage and motivated this by
economic ideas and coined the principle of

• The rich get richter phenomenon based on

• cumulative advantage “the more money i’ve got the more money I make”
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He explained this using the example of work frequencies in text. He assumed

1. the k + 1th worh in a sequence of words is a word previously chosen
in the sequence with a probability proportional to the number it has
appeared already

2. at a constant rate new words appear

3.8.1 The Price Model (1965)

In 1965 Price adapted these ideas to networks. He wanted to understand the
structure of the network generated by scientific articles that cite one another
This model adapts the two concepts of

1. growth

2. cumulative advantage

to understand the network of citation in scientific articles. Price noticed that
the number of citations a paper gets exhibit a power law distribution. Given
a snapshot of all the scientific articles at a given time, one can think of those
as a directed network, in which each node is a paper that cites other paper by
connecting to them. Therefore if paper i cites paper j there’s a link from i to
j , so A j i = 1 (but Ai j = 0). So we have a picture as illustrated in Fig. 3.3.

The in-degree
qi =

∑
j

Ai j

is the total number of citation a paper has and the out-degree

ki =
∑

j
A j i

is the number of paper that paper i cites. The first think one must notice is
that the out degree k has a typical size, say 10-20 citations, whereas the in-
degree can be very small or very large. Also, when a new paper is added, it
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Figure 3.3: The network of scientific papers can be considered as a directed
graph. If a new paper appears it has cites a typical number c of
papers in the set and generates new connections to other nodes.
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comes in with it in-degree into the network, and by connecting it changes the
out-degree of the network. At a given point we have∑

i
qi =

∑
i

ki = L

the number of references in the whole body of papers. The idea of Price was
the following, making the following assumptions

• When a new paper comes in, it does so by citing and average number
c = 〈k〉 other papers. This number does not have to be constant for every
paper that comes in, but it should have an average c.

• A paper i cites another paper with a higher probability if that paper has
a high in degree q j , meaning that paper j has already lots of citations.
This is the cumulative advantage.

In general we have to pick the out-degree from a distribution

p(k) with 〈k〉 = c

the simplest choice being
p(k) = δkc

where δ is the Kronecker delta but we could also chose

p(k) = ck

k !
e−c .

which also has
〈k〉 = c

Let’s assume at time t we have n papers that are available for citation and let’s
label them j . Then according to the second rule we should have

p( j ) = f (q j )

where p( j ) is the probability of citing paper j . So we have to have∑
j

p( j ) = 1
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and we need an increasing function f (q) taking into account the accumulative
advantage. Price made the following asssumtion

f (q) ∝ (a +q)

where a is a nonzero constant. This is supposed to model that also papers that
haven’t been cited at all have a probability of being cited. So for instance the
ratio between a paper that has no citation and one that has 1 citation is given
by

f (0)

f (1)
= a

1+a

If a = 1 then f (1) = 2 f (0) if a = 10 then f (0) ≈ f (1). From this it follows that

p( j ) = a +q j∑
(a +q j )

= a +q j

n(a +〈
q
〉

)
= a +q j

n(a + c)
.

In order to obtain the distribution of in-degrees p(q) we have to do computa-
tions that we will not get into here. The basic idea is this. If we have at time t a
network of n nodes and a distribution of in-degrees given by p(q, t ). Then by
adding a new node, we change that distribution to p(q, t +1) and we can write
down what is known as a Master-equation for the evolution of the distribu-
tion of in degrees. Let’s call n the number of papers in the set at time t . Then
np(q, t ) are the number of papers that have q citations and (n +1)p(q, t +1)
are the number of papers with q citations afterwares. We can then write

(n +1)p(q, t +1) = np(q, t )+w(q −1) p(q −1, t )−w(q) p(q, t ).

What is this? This is a balance equation. At t we have np(q, t ) papers with
q citations. Some of these will get cited by the paper that we add at time t
and become papers that have then an in-degree of q +1. How many papers,
on average will that be? that will be the the number of papers with degree q
i.e. np(q, t ) times the probability that each receives a new citation times the
number of citations added to the system which is

w(q) = c(a +q)

n(a + c)
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so

w(q)×np(q, t ) = c(a +q)

(a + c)
p(q, t )

Likewise some nodes become papers of in-degree q , those that at time t had
degree q −1. The number of those are np(q −1, t ) and the likelihood of them
being promoted to q is

w(q −1) = c(a +q −1)

n(a + c)

so alltogether we get

(n +1)p(q, t +1) = np(q, t )+ c(a +q −1)

a + c
p(q −1, t )− c(a +q)

a + c
p(q, t ).

This is a complicated equation, but it can be solved. The solution is a bit te-
dious. The key result is that when one tries to investigate the limit t →∞ or
instead finding a solution p(q, t ) that is time independent one finds

p(q) ∼ 1

q1+µ

with
µ= 1+ a

c
This is the key. The price model naturally yields a power-law of in degree in the
directed network of paper-citations with only the two ingredients growth and
cumulative advantage. The exponent is determined by the two parameters a
and c in general one assumes a ¿ 1 and c ≈ 10−20 which means thatµ≈ 1. For
most of the models we saw power-laws in we mesaureed µ = 2 which would
imply a = c. This would be fitting. The problem is that we have not really
a way for measuring a, whereas c is no problem. Shortly we will discuss a
natural system that generates µ = 2. First let’s breifly discuss how to generate
such a scale free network in a computer.

3.8.2 Price model Numerically

To investigate the price model numericall one first fixes the parameters a and
c to say a = 1 and c = 10. We then start with say n = 50 nodes that are all
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unconnected. We also have to specify the distribution for out-degrees k, p(k).
At every step we

1. increase n → n +1

2. draw a random number from p(k) for the out degree of the new node

3. for each of the k new links we attach with probability

p j =
a +q j

na + c

to node j

4. return to step 1

The only difficulty in this process is that we have to compute p j for all the
nodes at every step which may take a long time if we want to generate large
networks. So there’s a better way.

3.8.2.1 Krapivsky-Redner-Method

when we attach a new link let’s do one of two things

1. with probability φ we attach the link proportional to the in-degree

Q j =
q j∑
j q j

= q j

nc

2. with probability 1−φ we attach uniformly among all the j target nodes

P j = 1

n

Then the probaiblity of connecting to j is

p j =φ
q j

nc
+ (1−φ)

1

n
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Now let’s pick

φ= c

c +a

in this case we get

p j =
a +q j

na + c

which is what we want. This is a clear advantage. All we have to keep track of
is the list of arrowheads of the links. If we pick from that list uniformly we will
pick nodes attached to the arrowheads proportional to their in-degree.

3.8.3 The Barabasi-Albert Model

The Price model is a model for a directed network in which we distinguish
between in and out degree. A similar model was developed by Barabasi and
Albert 34 years later for undirected networks. This model starts with a small
set of m nodes. At each step a new node is added with degree m and attaches
to the nodes that already exist in the network propotional to their degree

p(i , j ) = k j∑
j k j

.

This is a special case of the price model and it can be shown that the key fea-
ture of this model is an asymptotic power-law in the degree distribution

p(k) ∼ 1

k3 .
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The topic of network resilience is related to the question:

• What happens to the network if we successively remove some network
elements, i.e. nodes or links, randomly or in some informed fashion?

Basically we can distinguish between two different procedures, either we re-
move links or we remove nodes and their links.

By informed, we mean we could remove elements by their rank, e.g. terror-
ists may target strongly central nodes, e.g. those that have a high degree or
high betweenness centrality.

4.1 Measuring impact

The whole topic about network resilience is a global topic. We would like to
know what happens to a network globally. The two things that measure some-
thing globally that come to mind are:

1. The diameter of the network. Recall that this is the mean shortest path
d of the network.

2. The components of the network

If we start removing nodes, we would expect

• The diameter of the network to increase, because by removing elements
we remove possible shortest paths of the network

• The overall number of components to increase because when we ele-
ments we may separate connected components.
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These are qualitatively correct ideas, and we could immediately test the on the
computer. Before we do so, let’s look at some of the theory that resembles the
backbone of many of these studies.

4.2 Percolation Theory

The origin of network resilience is percolation theory that originally was devel-
oped for d-dimensional lattices, generally d ≥ 2. Let’s look at a two-dimensional
lattice. Percolation theory asks the following questions. In the limit of an infi-
nite lattice, what is the fraction of

• nodes (site percolation) or

• links (bond-percolation)

that has to be removed in order to find a path from one end of the lattice to
the other end. Of course, it is clear that this depends on which elements of the
lattic I remove. So let’s assume we remove them randomly. Also in this case the
answer may depend on the particular random choice of elements we remove.

It turns out however that in the limit of infinite system size one can show
that for a given fraction of remove elements, the probability that one can find a
path from one end to the other is either 0 or 1. The key question is form which
fraction pc or elements has to be removed. This turns out to be an intensely
difficult question to anwers, except for in a few simple cases. For example for
bond percolation on a quare lattice we have pc = 1/2. That means half the
bond need to be removed. for p > pc there is not path trough the system, for
p < pc there is. The critical value pc is called the percolation threshold.

For site percolation in 2d no analytic result exists the numerical value so far
obtained is

pc = 0.592746

No one knows why. For the triangular lattice the situation is reversed the site
percolation threshold is pc = 1/2 and the bond percolation threshold is

pc = 0.347296
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In networks the question is related to the question: how many elements do
we have to remove in order for the network to fall apart. Recall that many
networks possess a giant component when they are sufficiently connected and
below a certain connectivity the giant component disappears.

4.3 Percolation in Network

4.3.1 Complete networks

Let’s first consider fully connected networks. Let’s start with a network that
has N nodes and L = N (N −1)/2 links. Let’s now remove a fraction of p nodes.
What is the critical p such that the giant component disappears. Coming from
a fully connected network and removing a fraction of p links is equivalent to
starting with no links and adding q = 1−p links. So a complete network with a
fraction p removed is equivalent to and ER network with connectivity param-
eter q .

And we learned earlier that the critical mean degree kc = 1 for an ER net-
work. And since

q(N −1) = k

we have

qc = 1

N −1

And therefore

pc = 1− 1

N −1
= N −1−1

N −1
= N −2

N −1

So we have to remove almost all nodes, leaving

qc ≈ 1

N
.

4.3.2 Configurational Model

Let’s a assume we have a network with degree distribution p(k) and mean de-
gree 〈k〉. One of the things we have to recall is that the probability distribution
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for the degree of a neighbot is given by

q1(k) = kp(k)

〈k〉 ,

with the mean degree

〈k〉1 =
〈

k2
〉

〈k〉 ≥ 〈k〉 .

Let’s recall briefly, how this unual result came about. Let’s say you are a node
in the configurational model and you look at one of your links. In the configu-
rational model, this link of yours is going to be connected to one of the 2L −1
link-stubs in the rest of the network with equal probability. Now pick a single
node that has degree k so has k stubs. with probability

k

2L−1

your link is going to be connected to exactly this node. How likely is it that your
link is going to be connected to any link of degree k. There are np(k) nodes of
this type to this probability is

q(k) = k

2L−1
×N ×p(k) = N

2L−1
×k ×p(k) = kp(k)

2L−1
N

= kp(k)

〈k〉 .

On average, your friends have a higher connectivity than you do. We will need
this result in order to understand the percolation transition in the configura-
tional model.

Sometimes we are interested in the so called excess degree distribution, the
pdf that the degree of the node is k but not counting the link on which I ar-
rived. That’s simply a shift to the right

qe (k) = q(k +1) = (k +1)p(k +1)/〈k〉

Let’s assume we remove a fraction p of nodes from a network and let’s define

φ= 1−p

134



4 Network resilience

as the fraction of nodes that are still in the network. Lets define u as the proba-
bility that a node does NOT is not connected to the giant component through
a chosen neighbor. Let’s focus on a node of degree k. Then the probability that
this node is not connected at to the giant component is uk . What is the prob.
that the node has degree k? It’s p(k) so the probability of any node not being
connected to the GC is

g0(u) = ∑
k=0

p(k)uk .

So the probability that the node IS connected to the GC is given by

1− g0(u).

We are looking at a situation in which we have removed a fraction of 1 −φ
nodes. Obviously we are only investigating those nodes that have not been
removed, which is φ. The other ones are disconnected already by removal. So
the total fraction of nodes that belong to the giant component are given by

S =φ[
1− g0(u)

]
.

This isn’t helpful yet, because we still have to compute the quantity u which is
the probability that a node is NOT connect to the GC via a chosen neighbor.
Again there are two ways of NOT being connected to the GC:

1. Either the chosen neighbor is not part of the GC and is present (with
prob. φ)

2. or the neighbor has been removed (with prob. 1−φ).

If the neghbor, let’s label it A is still around and has degree k ′ + 1 then the
probability of that neighbor itself not being connected to the GC is uk ′

. So
adding both probs. gives

Q(k ′) = 1−φ+φuk ′
.

What is the probability that the neighbor has degree k ′. It’s given by the excess-
degree distribution q(k ′). Thus, the probability that the original node is not
connected to the GC is given by the expectation values of Q∑

k ′=0
(1−φ+φuk ′

)q(k ′+1)
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but this is also the probability of not being connected to the GC which is u, so

u = 1−φ+φ ∑
k=0

uk q(k +1)

which we write as
u = 1−φ+φg1(u)

where
g1(u) = ∑

k=0
uk q(k +1).

Now we have two equations:

S =φ[
1− g0(u)

]
,

and
u = 1−φ+φg1(u)

We can use the second one to compute u, plug that in to the first and get S(φ),
the size of the giant component. Now we can solve this graphically. trivially
u = 1 is a solution because

g1(1) = 1

One can show that 0 ≤ g1(u) ≤ 1 and that g1(u) is monotionically increasing
with u. Then three scenarios can happen.

1. If φ>φc then a solution u? < 1 exists which means not everything does
NOT belong to the GC

2. If φ<φc then u = 1 is the only solution, which means no GC exists and

3. φ=φc is the critical point when things fall apart.

The third condition is true when the derivative of the rhs. is 1 so when

1 =φc

∣∣∣∣d g1(u)

du

∣∣∣∣
u=1

136



4 Network resilience

So

d g1(u)

du
= d

du

∑
k=0

uk q(k +1) = 1

〈k〉
∑
k=0

k(k +1)p(k +1) =
〈

k2
〉−〈k〉
〈k〉

and thus

φc =
〈k〉〈

k2
〉−〈k〉 =

1

κ−1

with

κ=
〈

k2
〉

〈k〉 > 1.

Thus, the percolation transition in the configurational model is given by only
the moments of the degree distribution.

4.3.2.1 Example

So let’s look at a Poisson Random Network (ER in the limit of large N ) then we
have

p(k) = kk
0

k !
e−k0

where k0 is the mean degree. Then

〈k〉 = k0

and 〈
k2〉= k0(k0 +1)

so that

φc = k0

k2
0 +k0 −k0

= 1

k0

Therefore, if for instance the mean degree is 4 then even if I remove 3/4 of
the nodes, my network is still well connected. If the mean degree is 10 I can
remove 90% of the nodes and onlythen reach the critical point.

137



4 Network resilience

4.3.3 Percolation in scale-free networks

Remember that many scale free networks have a degree distribution

p(k) ∼ 1

k1+µ .

with an exponent 0 ≤µ≤ 2 for instance the BA network hasµ= 2. And remem-
ber that for these exponents we have〈

k2〉=∞

According to the reasoning above this would imply that

φc = 0

which means that in scale free networks I can keep removing links and never
destroy the giant component. Intuitively this is consistent withthe idea that
these networks have a hub and spoke structure, and it is very unlikely that by
removing nodes randomly I hit the hubs that connect everything.
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5.1 The simplest model

The idea of percolation is useful for trying to understand under which circum-
stances contagion processes can spread through a network. If we have a net-
work that has a giant component, we know that we have to remove a fraction

f = 1−φc

in order for that giant component to fall apart and thus keep a contagion
spread thoughout the entire network. This picture however is slightly over-
simplifying what is going on. Let’s look at epidemics of individuals. People
become infectious and can spread a disease to their neighbors. For many phe-
nomena there’s a typical period in which people are infectous. Effectively that
means that if a node i has ki neighbors, then for each link there is a transmis-
sion probability 0 ≤ T ≤ 1 to spread the disease across each link.

How can we determine if a disease spreads through a network. This will
be the case if every transmission accross a link, on average generates more
than 1 transmission acrross subsequent links. The ratio of the two is called the
reproduction number

R = average number of secondary infections caused by one transmission.

So given there is a transmission from node i to node j , then

R = T ×κ> 1

where κ is the expected degree of node j . This is equal to the excess distribu-
tion, because j is the neighbor of i and has an average degree to nodes (except
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for i ) given by κ. Earlier we learned that this is related to the average ndoe de-
gree by

κ= 〈k〉2 −〈k〉
〈k〉 ≥ 〈k〉

So the critical transmission probability is given by

Tc = 1

κ
= 〈k〉

〈k〉2 −〈k〉
So for an ER network we find

Tc = 1

〈k〉
which makes sense. But for a scale free network with

p(k) ∼ 1

k1+µ with µ≤ 2

we find
Tc = 0

This means that arbitrarily low transmission probability T will generate an
epidemic in a scale free network. This is because with probabiliy 1 a trans-
mission will be to a hub and from there it goes everywhere. Of course this is
only strictly true in an infinite system. For real scale-free networks Tc is finite
but will decrease with N .

5.2 General Epidemic Models

To get a better idea about spreading phenomena we need to look at models
for spreading phenomena that capture more of the dynamics. This will also
enable us to extract specifically what the effects will be that are induced by
network topologies. So let’s first look at models that describe the dynamics of
epidemics in single populations.
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5.2.1 The SIS model

This model assumes that we have a population with N individuals where N
is large enough so that fluctuations can be neglected. We also assume that
individuals can either be susceptible (S) on infectious (I) so that at any point
in time we have

S + I = N ,

individuals do not enter or leave the population. We assume that generally
two reactions can occur

S + I
α−→ 2I

I
β−→ S

The first reaction represents the transmission, an infected interacts with a sus-
ceptible and after that reaction we have 2 infecteds. The second equation rep-
resents that infecteds recover after a certain typical time. The parameters are

β : the recovery rate of an individual

This means that T = 1/β is the time an individual remains infectious before
becoming S again. E.g. this could be T = 3 days. The parameter α is the trans-
mission rate, for example something like 3 infections per day caused by one
individual. To that the quantity

R0 =α×T =α/β

is the average number of infectious caused by one infected individual in a sus-
ceptible population.

Let’s now assume that each of the reactions induce a change in the number
of susceptibles and infecteds. So that

S(t +∆t ) = S(t )+∆S1(t )+∆S2(t )

I (t +∆t ) = I (t )+∆I1(t )+∆I2(t )

For the first reaction we assume that

∆I1 =∆t ×α×S × I

N
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each of the S susceptible (the S factor above) can become infected by interact-
ing with an infected individual (the factor I /N ). Likewise because of reaction
1 we have

∆S1 =−∆t ×α×S × I

N
Reaction two induces a change

∆I2 =−∆t ×β× I =−∆S2.

Now we can combine these to obtain the differential equations

dS

d t
= −αSI /N +βI

d I

d t
= αSI /N −βI

Note that this means that
d N /d t = 0

as expected. So we can use S = N − I to reduce the set of two odes to one

d I

d t
=α(N − I )I /N −βI .

Now we can use the relative fraction of infecteds x = I /N which yields

d x/d t =αx(1−x)−βx.

This is the SIS model. Note that x = 0 and

x? = 1− 1

R0

are the stationary solutions of this where R0 = α/β. It turns out that the non-
trivial fixed point above is stable if R0 > 1 and unstable if R0 < 1 (in which case
x = 0) is stable. So the SIS has a threshold property, only if R0 > 1 the system
evolves into a state where we have a stable and constant fraction of infecteds
x?. This is called the endemic state. If for instance the basic reproduction
number R0 = 4 this implies that x? = 0.75 which would imply that 75% of the
population is infectious.
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Figure 5.1: Dynamics of the SIR model for R0 = 2.5.
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5.2.2 The SIR model

This is the second most simple model to capture the time-course of an epi-
demic. It has different dynamic ingredients. Instead or going back to the sus-
ceptible class, infected become immune and go to a recovered class in which
they cannot catch the disease a second time, so we have

S → I → R

which is why this model is called the SIR model. So we have the two equations

S + I
α−→ 2I

I
β−→ R

and the conservation of people says that

N = R + I +S.

We can do the same reasoning as above and we obtain two differential equa-
tions for S and I that read

dS

d t
= −αSI /N

d I

d t
= αSI /N −βI

We do not need the ODE for R because we can compute it from R = N − I −S.
Using relative variable x = I /N and y = S/N these become

d x/d t = αx y −βx

d y/d t = −αx y

We immediately see that susceptibles can only decrease because x, y ≥ 0 and
d y/d t ≤ 0. We can also see that if we start the system for x(0) = ε and y(0) =
1−ε initially the infecteds will behave according to

d x/d t ≈ (α−β)x
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Figure 5.2: Stochastic SIR model.

which yields an exponential increase if R0 > 1. It turns out the the nonlinear
set of ODEs above cannot be solved analyitcally. But we can solve it in the
computer to see what the behavior is. We see in Fig. that for R0 the shape
of x(t ) exhibits a typical epidemic peak. The larger R0 the larger that peak.
Note also that after the epidemic we always have a fraction of susceptibles
that never caught the disease.

5.2.3 Stochasticity in the SIR model

One key drawback of the classes of models above is that they are deterministc,
i.e. if we start with some initial condition, the system will always evolve the
same way. This is certainly not the case for small populations where individual
interactions shape the dynamics. One way to introduce stochasticity is this.
Let”s think of the system evolving in a state space spanned by the dimensions
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S and I . At everypoint the system is going to be in a state given by

X = (S, I ).

Then reaction 1 induces a step in state space

(S, I ) → (S −1,S +1)

and reaction 2 induces a step in state space given by

(S, I ) → (S, I −1).

If the system is in state (S, I ) we assume that we cannot predict whether reac-
tion 1 occurs or reaction 2 or no reaction at all. What we will make assumption
on are the probabilities, or propensities of each reaction occuring. Let’s denote
the probability of reaction 1 by

w+ ≈∆t ×α× I ×S/N

and by
w− ≈∆t ×α× I

the prob. that reaction 2 occurs, both in a small interval ∆t . The probability
that nothing occurs is

w0 = 1−w−−w+
= 1−∆t × r (X)

where
r (X) =αI S/N −βI

is the propensity that either reaction 1 or 2 will occur. w0 is the probability
that nothing happens in the time interval ∆t . So what’s the probability that
either reaction 1 or 2 occur in the time intervale [T,T +∆t ]. We can split the
time T into n intervales, T = n∆t . Then this probability

p(T,X) ≈ wn
0∆t r (X)

≈ (1−∆t × r (X))n∆t r (X)

≈ (1−T /n × r (X))n∆t r (X)
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If we let n →∞ this becomes

p(T,X) = r (X)e−Tr (X)d t

This means the times the system stays in state X is a random variable T with
an exponential distribution given by the above equation. After this time T the
system goes into one of the two new states with probability

p+ = w+
w++w−

= αI S

αI S +βN I

and

p− = w−
w++w−

= βN I

αI S +βN I

So we can simulate the process the following way

1. We initialize the system in a state X = (S, I )

2. we compute the total exit rate r (X) for that state

3. we draw a random waiting time T from the exponential distribution and
increment time by T

4. we pick one of the directions the system evolves along by p±

5. we go back to 2.)

A simulation of such a stochastic SIR model is shown in Fig. 5.2.

5.2.4 Spatial models

The models above capture the dynamics in single populations in which we can
assume that the probability of interaction is the same between any chosen pair
of individuals. This is not very realistic because we all have a high probabil-
ity of interacting with our friends neighbors and people in our neighborhood.
The first type of models that try to account for this are spatial lattice models,
most of them are two-dimensional. The nodes in the network are ordered on
2-d lattices and can have any of the three states S, I and R.
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The dynamics is generated in a similar fashion as in the compartmental
models above. on each lattice a node can make two transitions

S → I

and
I → S

for the SIS model. We assume that at every discrete time step n the probability
that a node that is infected makes a transition to S is

0 ≤β≤ 1

Susceptible nodes make a transition to the infected state with a probability
which is propotional to the parameter α and the fraction of infecteds in the
neighborgood

pi =αn(I )

k

where k is the total number of neighbors and n(I ) the fraction of infecteds.
This is very easy to simulate. There are two choice, either one updates all the
nodes at once or randomly and sequentially.

5.2.4.1 SIR on a lattice

This can be done in a similar way. The only difference is that infecteds become
recovered with probability β. Fig. 5.3

5.2.5 Generalizations to networks

Whatever works on a lattice also works on a network. The key generalization
is the infection probability of a node. For every susceptible node i we say that
the probability of infection is

pi =αn(I )

ki

where again n(I ) are those nodes of the ki neighbors that are infected.
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Figure 5.3: Three snapshots of the SIR model on a lattice. Green denotes sus-
ceptible, red infected and blue recovered.

5.3 Metapopulation Network Models

The above models are designed around the concept of nodes being single indi-
viduals and their links transmission pathsways between them. We also men-
tioned that a different type of network model exists in which each node is a
population and the coupling the flux of individuals between these locations
labeled m. So in addition to reactions

Sm + Im
α−→ 2Im

Im
β−→ Rm (orSm)

we assume that individuals can move around between locations

Xn
wnm−−−→ Xm

where Xm is a place holder for any type of individual and wmn is a rate of hop-
ping between places. So before tackling this problem we need to understand
movements on networks. The easiest type of random movement is a random
walk, in which each individual hops between nodes of networks.

5.3.1 Diffusion and random on network

Let’s assume the simplest scenario. We have m = 1, ..., M locations and we con-
sider an individual that hops between them, hopping from m to n only occurs
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if there’s a link Anm = 1. For simplicity we consider only symmetric networks,
so being able to hop from n tpo m implies I can hop the other direction, too.
The difficulty is again to translate topology into dynamics. We will see that
there are different ways of doing things.

5.3.1.1 Model 1

Let’s assume a random walker is placed with some probability on the set of
nodes, say p0(n). And at discrete timesteps t = 1,2, ... the walker hops to one
of the connected nodes. then the probability of finding the walker at node m
at time t = 1 and at n at time t = 0 is given by

p(m,1,n,0) = w(m|n)p0(n)

where w(m|n) is the conditional probability of jumping from n to m. We as-
sume that w(n|n) = 0. The proability of the walker being at m at time t = 1 is
given by

p1(m) =∑
n

p(m,1;n,0) =∑
n

w(m|n)p0(n)

We can write this as a matrix equation in which p1(m) is the m-th element of
a vector p1so the eq. become

p1 = Wp0

where the matrix W has elements Wnm = w(m|n) Likewise the probability of
finding the walker at location n at time t = 2 is given by

p2 = Wp1 = W2p0

and in general
pt+1 = Wpt

It might occur that the probability that the walker is at a given location does
not depend on time which implies that

p? = Wp?
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so the stationar pdf p?(m) is an eigenvector with eigenvalue 1 of the probabil-
ity matrix w(m|n). Not that since w(m|n) is a probability it has to be normal-
ized so it has to fullfill ∑

m
w(m|n) = 1,

the walker has to jump somewhere.
In the simplest model of a random walker on a network we assume that

w(m|n) ∝ Amn

which means that

w(m|n) = Anm

kn

this also in general implies that

w(m|n) 6= w(m|n).

Then the above equation becomes

pt+1(n) = 1

kn

∑
m

Anm pt (m).

and the equation for the stationary distribution is given by

kn p?(n) =∑
m

Anm p?(m).

We can check that this is this has a trivial stationar solution

p?(n) = 1

N

so the walker is everywhere with equal probability.
How quickly does is that stationary distribution reached? Let’s look at

pt = Wt p0

We can diagonalize so
W = S−1DS
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in which D is diagonal and contains the eigenvalues. So

Spt = D t Sp0

The matrix D t has diagonal elements λt
i wher λi is the i -th eigenvalue of W . It

can be shown that the largest eigenvalue is 1, corresponding to the stationary
solution and that all other eigenvalues are real and λi < 1, so in D t the term
that relaxes least fast is

e−t/τ

where

τ=− 1

λmax

After this time, the proability has pretty much relatex to p?.

5.3.2 Solving random walks on a computer

There are two ways to simulate this type of hopping process on a network.
Starting a a certain node n0 we can compute the random sequence

n0,n1, ...nt

All we have to do is at each location nt = m we determine the next location
according to

w(m|n) = Amn

kn
.

If we fix the position n0 we have an initial probability distribution

p0(n) = δn,n0

and if we want to compute pt (n) we use equation

pt = Wt p0

So

pt (n) = ∑
m

(W t )nm p0(m)

pt (n) = ∑
m

(W t )nmδm,n0

= (
W t )

n,n0
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5.3.3 Model 2

This however is not the only way to model hopping on a network. Let’s look
at a system in continous time. Let’s assume that in a small time interval ∆t a
walker can jump from on location to another or remain at the location that it
is at.The probability of finding a walker at location

p(n, t +∆t ) = p(n, t )+∆t

[∑
m

w(n|m)p(m, t )−w(m|n)p(n, t )

]
the first term increases the probability because the walker could be coming
from one of the locations m and the second term decreases the probablity
because the walker could be leaving n to go somewhere else. So this yiels

∂t p(n, t ) =∑
m

(
w(n|m)p(m, t )−w(m|n)p(n, t )

)
This is a master equation and w(n|m) is the probability rate of going from m
to n. Setting the left hand side to zero we can determine the stationary pdf by
the equation

w(n|m)p(m) = w(m|n)p(n)

this is called detailed balance. in Equilbirum there’s as much probability flux
from m to n as the other way around. What’s important here is that w(n|m) is
not a probability, but a proability rate. Hence, it does not have to be normal-
ized. So let’s assume the rate of hopping from m to n is constant and equal to
γ if a link exists between n and m and zero otherwise. In this case we have

w(n|m) = γAnm

This also means that
w(n|m) = w(m|n)

which also means that
p(m) = p(n)
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so the stationary distribution is constant, as before. The master equation be-
comes

∂t p(n, t ) = γ
∑
m

Anm p(m, t )− Amn p(n, t )

= γ
∑
m

Anm p(m, t )−kn p(n, t )

= γ
∑
m

Dnm p(m, t )

with
Dnm = Anm −knδnm

this matrix is called the network Laplacian. When we sum over it’s rows we get
zero ∑

m
Dnm = 0

We can again write the dynamics of p(n, t ) i vector notation and get

∂t p(t ) = γDp(t )

with the solution
p(t ) = eγDt p(0).

One can show that the largest eigenvalue of D is zero, corresponding to the sta-
tionary solution, and the largest nonzero eigenvalue ios nevative. This largest
eigenvalue determines the rate at which the equilibrium is reached and

p(t ) ≈ e−γ|λ1|t p(0)

The relaxation time of te random walk, the time an ensemble of walkers need
to read everything in the network is given by

T = 1

γ|λ1|
.

It seems a little suprising that a walker in equilibrium is as likely to be at a
high degree node than at a small degree node. Because one would expect the
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walker to hit at high-degree node more freuqnetly than a node of low degree.
This is true, but the walker doesn’t spend much time on a hub. One can show
from the master equation that the typical waiting time at a node is given by

Tn = 1

kn

which is small for nodes of high degree.

5.3.3.1 Random walks on weighted networks

Above we assumed that
w(n|m) = γAnm .

and that the links are unweighted. of course we can easily generaloze this to
weighted network with elements Wnm and we could just define

w(n|m) =Wnm

Typically we do not have good data on the probability rates w(n|m) in real
mobiltiy patterns, what we do have is the equilbirium flux

Fnm = w(n|m)Nm = w(m|n)Nn

If we divide this by
N =∑

m
Nm

we get
fnm = w(n|m)pm = w(m|n)pn = fnm

where Nm is the number of people in population m. Given Nnand Fnm we can
compute w(n|m), however. So if we define

w(n|m) = γFnm

Nm

and generate diffusion according to

∂t pn =∑
m

w(n|m)pm −w(m|n)pn

we have a system with and equilibrium distribution

pn = Nn

N
.
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5.3.4 SIS Dynamics on a network

Let’s now combine random walks on a network with epidemics or in general
contagion phenomena. So in addition to the epidemic reactions we have a set
of equations

Sn
wmn−−−→ Sm

and
In

wmn−−−→ Im

What are the equations that govern these types more models. Let’s assume
that we have m = 1, ..M populations with Nm individuals. And let’s assume
that in each population we can describe the dynamics by ordinary SIS dynam-
ics, i.e.

d In/d t = α
Sn In

Nn
−βIn

dSn/d t = −αSn In

Nn
+βIn

Now let’s assume that in a small time interval ∆t individuals are exchanged
between places. Let’s denote by∆t×Fnm the number of individuals that travel
from m to n in a small time interval, so Fnm is the flux of individuals from m
to n. If the overall population is in equilibrium, then we must have

Fnm = Fmn

This travel induces a change in the number of infecteds and susceptibles in
population n.

∆In = γ∑
m
∆t ×

[
Fnm × Im

Nm
−Fmn × In

Nn

]
Some leave and some come. So the above equations become

d In/d t = α
Sn In

Nn
−βIn +γ∑

m
×

[
Fnm × Im

Nm
−Fmn × In

Nn

]
dSn/d t = −αSn In

Nn
+βIn +γ∑

m
×

[
Fnm × Sm

Nm
−Fmn × Sn

Nn

]
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We can use relative concentrations

xn = In/Nn , yn = Sn/In

to obtain

d xn/d t = αxn yn −βxn + γ

Nn

∑
m

[Fnm xm −Fmn xn]

d yn/d t = −αxn yn +βxn + γ

Nn

∑
m

[
Fnm ym −Fmn yn

]
which we can also write as

d xn/d t = αxn yn −βxn + γ

Nn

∑
m

Fnm (xm −xn)

d yn/d t = −αxn yn +βxn + γ

Nn

∑
m

Fnm
(
ym − yn

)
bcause in equilibrium Fnm = Fmn . We can show that

d

d t
(In +Sn) = 0

which means that yn = 1−xn . So we have

d xn/d t =αxn(1−xn)−βxn + γ

Nn

∑
m

Fnm (xm −xn)

Now let’s see if an epidemic can spread through the entire system. Obviously
xm = 0 for m = 1,2, ..., M is a stationary solution. We can assume that if we
perturb the system a little away from the disease free state so if

xm(0) ≈ ε
then the system is approx. linear

d xn/d t ≈ (α−β)xn + γ

Nn

∑
m

Fnm (xm −xn)

We can write this as
d xn/d t ≈∑

m
Gnm xn
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with

Gnm =
[

(α−β)− γ

Nn

∑
m

Fmn

]
δnm +γFmn

Nn
.

This is easier if we make use of

Fmn = wmn Nn

so we’ve got
G = (α−β)1−γD

where
Dnm = γwnm −φnδn

and
φn =∑

m
wmn

5.4 Social Dynamics

5.4.1 Spread of rumours

The SIR model consists of the basic mechanism triggered by the two reactions

S + I
α−→ 2I

I
β−→ R

We can also think of this as a mechanism for rumour spreading. In fact this has
been used in this conext. However, in a slightly modified version. We make the
identification

• S: susceptible, i.e. the rumour is new to me

• I : active rumour spreader

• R: knows the information, but no longer is interested in spreading it
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Then we have the following reaction for the transmission of the rumour

S + I
α−→ 2I

so the first reaction of the SIR model, but instead of the spontaneous transition
to the passive state R we assume that this transition is also triggered by and
interaction

I + I
β−→ I +R

I +R
β−→ 2R

This doesn’t make much of a difference one would expect. But let’s see. Of
course we still have conservation of individuals

N = I +S +R.

The change in each class in a small time interval is

∆S ≈ −∆tαI S/N

∆I ≈ ∆t
[
αI S/N −βI 2/N −βI R/N

]
∆R ≈ ∆t

[
βI 2/N +βI R/N

]
which means we have a set of differential equations

d x/d t = xαy −βx2 −βx(1−x − y)

d y/d t = −αx y

which we can write

d x/d t = (α+β)x y −βx

d y/d t = −αx y

The only difference to the ordinary SIR model is that we have a factor α+β in
the first eq. instead of just α. We can expect the dynamics to look the same. In
the SIR model we new, that an epidemic occured if the ratio

R0 = α

β
> 1.
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Here this turns into

R0 = α+β
β

> 1

which means
α

β
> 0

so the rumour model exhibits an “epidemic” for arbitrarily small rate param-
eters α and β. Something we would also expect to happen in a network. One
can also compute the final number of people how once spread the news, this
is given by

r∞ = 1−e−( α+β
β

)r∞

5.4.1.1 Rumor spread in small world networks

We can use the equations

S + I
α−→ 2I

and

I + I
β−→ I +R

I +R
β−→ 2R

and model those on a network in discrete time as usual. We make this as sim-
ple as possible:

1. We initiall infect a single node i

2. We pick one of its neighbors as given by the adjacency matrix, so

p j =
A j i

ki

3. then we have the choice:
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Figure 5.4: Rumors on a small network.

a) If node j is in the susceptible class, it becomes infected.

b) If node j is infected or recovered, node i recovers

4. We pick another infected node at random and repeat the process

We would expect that this process spreads the rumor throughout a consider-
able fraction of the network. Note however that f we have a strong local clus-
tering around a node, what can happen is that many nodes become infected
and have infected neighbors, everytime we pick one of those, they recover and
can exstinguish the rumor spread. On the other hand, if we have a network
that is small world we can expect the rumour to spread far away. This is in fact
seen.

In networks the process that does not have a threshold in a well mixed popu-
lation, exhibits a clear cut phase-transition in small worlds. Fig. 5.4 illustrates
the asymptotic value of r∞ as a function of the rewiring probability p.
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5.4.2 The Ising Model

One of the most important conceptual models in the context of social influ-
ence is the Ising Model. In this model, we assume that each node i in a net-
work can be in one of two states

si =
{

1

−1

These two states can represent two opposing political opinions. Now let’s
assume a network adjacency matrix quantifies the channels of interactions,
Ai j = 1 means that nodes i and j can interact and according to the interaction
change their state

si (t +1) →−si (t )

based on their neighborhood. Let’s assume that for each node, it is benefitial
to adopt the opinion of its neighbors. Let’s look at a pair si and s j and the
quantity

hi j =−1

2
si Ai j s j .

Obviously, if these nodes are uncoupled this quantity is zero. If Ai j = 1 then

hi j =
{
−1 if si = s j

1 if si =−s j

Thus, if aligning si with s j is benefitial, a negative hi j is benefitial. Of course,
node i is connected to many neighbors in general, and flipping it will align it
with some and not others. But we can compute the net alignment by

hi =−1

2
si

∑
j

Ai j s j

We can rewrite this as

hi =−1

2
(k+−k−)
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where k+ is the number of i ’s neighbors with si = s j and k− with s j =−si . Thus
flipping i will induce a change in hi of magnitude

∆hi =−1

2
(k−−k+)+ 1

2
(k+−k−) =−(k−−k+)

Thus, if
k− > k+

it is benefitial for i to switch because it lowers the overall agreement with i ’s
neighborhood. The overall agreement in the entire network can be computed
by

H =−1

2

∑
i j

si Ai j s j =−1

2
sT As

In physics this is the energy of a spin system that can model the behavior
of magnetic spins. Clearly the lowest possible “energy” is when all spins are
alighned in which case

H =−1

2

∑
i j

Ai j =−L

where L is the number of links in the system.
We can now simulate this model on a computer by the following algorithm:

1. Pick a node at random

2. compute the change in “agreement” of i were to change it’s state ∆hi

a) if ∆hi ≤ 0 flip the spin

b) if ∆hi > 0 do not flip the spin

3. go back to 2.

This process will eventually go into the state that corresponds to full agree-
ment in the set of nodes. How can we measure this? Simply by

M = 1

N

∑
i

si
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so that M =±1 if everyone agrees, and if the spins are random then M ≈ 0. This
model is not so interesting as such but becomes interesting in the following
way:

Let’s assume that each node has a probability to flip it’s state, even if

∆hi > 0

This is equivalent to going with the minority opinion. So we can set the system
up

p(si →−si ) =
{

1 if ∆hi ≤ 0

qi if ∆hi > 0

and we can chose
qi = exp(−∆hi /T )

in which T > 0 is a parameter. If T → 0 then qi = 0 which is the case described
above. If T À∆hi then qi ≈ 1 which means that I flip the spin with probability
1 as well. The question is, how does the overall opinion in the population look
like as a function of the parameter T

M(T ) =?

This depends very much on the adjacency matrix A. In a regular two dimen-
sional grid, the system exhibits a second order phase transition, for

T > Tc

we find
M ≈ 0

but for T < Tc

|M | > 0

Can we compute whether a phase transition exists in complex networks?
The general answer to this question is “no”. We can do it numerically but alre-
aly the 2-d lattice is very complicated. A handwaving approximation suggests
that the transition in the configurational model is

Tc ∝
〈

k2
〉

〈k〉
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Figure 5.5: Phase transition of the Ising Model in a 2-d lattice.
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so divergent in scale-free networks.

5.4.3 The Voter Model

Very much related to the Ising model is the voter model. Again, the state of a
node is given by

si =
{

1

−1

and transitions can be made according to

si (t +1) →−si (t ).

In the voter model, each node picks one of it’s neighbors at random and aligns
its opinion to that node so if i is the node of interest and j one of i’s neighbors
then

si (t +1) = s j (t ).

Also in this model, the key question is if the entire system reaches a state in
which consense exists throuought the entire population. It turns out that sim-
ulating the voter model on a 2-d lattice generates regions of consent that are
separated by interfaces that separate these regions or so-called active bonds
which are defined as having two nodes of opposing spin on each end. The
number of interface decreases over time which can be understood in a one di-
mensional lattice. The borderes fluctuate in either direction until two borders
meet and merge, getting rid of one border. Thus the number of active bond
nA(t ) decreases over time. In a one-dimensional lattice like this

nA(t ) ∼ 1/
p

t .

In fact one can show but it is slightly involved that

nA(t ) ∼


t−1/2 d = 1

1/log t d = 2

a −bt−d/2 d > 2
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which means that in more than 2 dimensions there will always be active links.
What happens in a small world? Because of the small probability of having a
link to a distant region, what can happen is that a region of one opinion and
seed into a region of another opinion such that no overall consent is reached.
The function nA(t ) reaches a plateau.

5.4.4 The majority rule

This is very similar to the voter model, but involves groups of nodes. At each
time step, on picks a group of r nodes and computes the opinion of that group.
The group size is usually taken as random for instance taken from a binomial
distribution, Poisson distribution.

q =
r∑

i=1
si

and then one updates all nodes in that group

si (t +1) =
{

1 if q > 0

0 if q < 0
.

The groups are interpreted as discussion groups that form a consensus.

5.4.5 Neural networks: The Hopfield model

The Ising model can be used in the context of social networks in which the
spins si represent the opinion polarity of a node si . The application range
is much larger. In fact the concept was was of the first models in computa-
tional neuroscience and plays a role in one of the most fundamental models
for memory.

In the Hopfield model wei have a set of neurons labeled i and they are inter-
connected by symmetric weighted links wi j = w j i which resemble the synap-
tic input to from neuron i to j and vice versa. There are only two possible
states for neurons

si = 1 active

si = 0 inactive
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The activity of a neuron at time-step n + 1 is determined by the input that
neuron gets from all the other neurons. This input is

hi =
∑

j
wi j s j

If this input exceeds a threshold, neuron i will become active so that

si (n +1) =σ [hi −θi ]

where

σ(x) =
{

1 x > 0

0 x ≤ 0

and θi is the threshold of neuron i . It can be shown, that if we update all the
neurons according to the rule given above, that the function

E = −1

2

∑
i j

si wi j s j +
∑

i
θi si

= −1

2
sWs−θT s

It can be shown that this function is non-increasing as afunction of time and
is bounded from below, so the evolution dynamics always approaches a local
minimum of E in which a subset of neurons are active. What we are saying is
that

E(s(n +1)) ≤ E(s(n))

The clue about the Hopfield model is that one can now chose or “learn” the
appropriate weights between neurons, such that the network can recall spe-
cific patterns in response to an input. For example, let’s define a state

xi

to be a state to be recovered by the dynamics of the network. So we want for
any initial condition si (0) that

lim
n→∞ si (n) = xi
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This way we can say that the neural network recovered the memory which
corresponds to the activity xi . We can chose

wi j = xi x j −x2
i δi j

If we plug this into the energy we get

E = −1

2

∑
i j

si xi x j s j +
∑

i
xi si +

∑
i
θi si

= −1

2

(∑
i

si xi

)2

+∑
i

(θi +xi )si

= −1

2
(s ·x)2 + (s ·x)+θ ·s

This has a minimum at
s = x

Let’s say we want to store multiple patterns in the network. One way of doing
this is by

wi j = 1

M

∑
α

xαi xαj −
[∑
α

xαi xαi

]
δi j

We can try this in a compute and see how succesfull the network recovers a
given memory state x.

5.4.6 Social Impact Theory

The psychological theory of social impact describes how individuals feel the
presence of their peers and how they in turn influence other individuals. The
impact of a social group on a subject depends on the number of individuals
in the group, on their convincing power, and on the distance from the subject,
where the distance may refer either to spatial proximity or to the closeness in
an abstract space of personal relationships. The starting point is a network of
N nodes. Each node i is characterized by an opinion

si =±1
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and by two parameters that estimate the strength of the nodes action its neigh-
bors:

• persuasiveness pi : capability to convince someone to change

• supportiveness qi : capability to convince someone to keep their opin-
ion.

These parameters are assumed to be random numbers, and introduce a disor-
der that is responsible for the complex dynamics of the model. The stength of
coupling of nodes is given by a weighted network wi j . Then we can fomulate
the total influence experienced by node i as

Ii = 1

2

∑
j

P j wi j (1− si s j )− 1

2

∑
j

Q j wi j (1+ si s j )

If s j = −si that means if i has the opposing opinion then si s j = −1 and the
term contributed to Ii by node j is wi j P j if on the other hand s j = si the im-
pact is −wi j Q j . This means the supporters try to decrease the social impact. I
is thus a measure of influence to switch the dynamics. The dynamics of opin-
ion is governed by

si (t +1) =−σ(si Ii )

For example if the opinion is si = +1 and Ii > 0, then si (t +1) = −1. If Ii < 1
then si (t +1) = si in general si (t +1) = si (t ) if Ii < 1 and flipping occurs when
Ii > 1.

5.4.7 Axelrod Model

In the Axelrod model each agent is endowed with a certain number F of cul-
tural features defining the individual’s attributes, each of those assuming any
one of Q possible values. So for each node i we have q f (i ) ∈ [1,Q]. The Voter
model is thus a particular case of Axelrod’s model, with F = 1 and Q = 2. The
model takes into account the fact that agents are likely to interact with oth-
ers only if they already share cultural attributes, and that the interaction then
tends to reinforce the similarity. The precise rules of the model are therefore
the following:
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• at each time step, two neighboring agents are selected i and j with Ai j =
1

• They interact with probability

p(i , j ) ∝
F∑

k=1
δqk (i ),qk ( j )

proportional to the number of features (or attributes) for which they
share the same value.

• one of the features for which they differ is chosen, and one of the agents
selected at random adopts the value of the other.

The local convergence rules can lead either to global polarization or to a cul-
turally fragmented state with coexistence of different homogeneous regions.
As F increases, the likelihood of convergence towards a globally homogeneous
state is enhanced, while this likelihood decreases when q increases. Indeed,
when more features are present (at fixed q), there is a greater chance that two
neighboring agents share at least one of them, and therefore the probability
of interaction is enhanced. At larger q instead, it is less probable for each fea-
ture to have a common value in two agents, and they interact with smaller
probability. In the case of Watts–Strogatz (two-dimensional) small-world net-
works, the disorder is shown to favor the ordered (homogeneous) state. In
other words, the existence of a culturally fragmented phase is hindered by the
presence of hubs and is no longer possible.

5.4.8 Boolean Networks

One of the most powerful network dynamical systems are boolean networks,
which are very much related to the Hopfield network of neurons. We will first
discuss the general idea.

A boolean network consists of nodes labeled i = 1, ...., N that can be in one
of two binary states

si ∈ {0,1}
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The states of all the nodes is updated synchronously according to some rule
which we can write as

s(t +1) = F(s(t ))

everything interesting is encoded in the function F. A few things are are en-
tirely independent an generally true for all F:

• Because each state of a node is binary, the state of the system can be
described by a binary sequence

s = 01101011001

for example. And the entire state space is finite having

Ω= 2N

different states.

• Because F is a deterministic function if at some point in time, say t0

s(t0) = s0

then
s(t0 +1) = F (s(t0)) = s1

should the system evole to the state s0 at some later time

s(t0 +T ) = s0

then also
s(t0 +T +1) = s1

This means however, that it will cycle through the intermediate states
again, only to arrive at s0 again at time 2T .

• The only other alternative is that

s1 = s0 = F (s0)

Consequenlty the system can only have cycles of fixed points. One may argue
that T could be infinitely large, but since the state space is finite this cannot
happen.
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5.4.8.1 Setting up a boolean network.

Let’s now focus on individual nodes i . Let’s assume each nodes next state is
determined by the input from K < N other nodes that node i “reads”. Now we
have to specify what nodes node i reads, this is of course determined by the
adjaceny matrix Ai j which for row i has only K nonzero values.

What is the total number of different inputs a node can get. Since the input
nodes are also bindary, this number of different inputs is2K . There’s an easy
way to do the bookkeeping for this. say we have K = 3. We first write down all
the different input states and what node i does with it.1

7 : 111 → 0

6 : 110 → 0

5 : 101 → 0

4 : 100 → 1

3 : 011 → 1

2 : 010 → 1

1 : 001 → 1

0 : 000 → 0

This specific rule is defined by its output on the 2K = 8 different inputs. The
output is a bindary sequence

00011110
.= 30

How many such rules are possible for 2K inputs? Well

22K = 256

So, how we’ve got everything we need and we can write it in a table with N
rows in which the first column is the index of node i , the next K columns the
inputs to node i and the last column the number that corresponds the rule Ri

which compute the output of i based on the input. Such a table could look
like this:
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node input 1 input 2 input 3 rule

1 4 15 2 12
2 1 3 2 16
3 3 5 3 1
... ... ... ... ...

5.4.9 Dynamics

For smallish network, one can try to understand the dynamics of such as sys-
tem by network visualization techniques. Instead of visualizing the network
say of N = 13 nodes, one visualizes the 2N = 4096 states the system can be in
as nodes. Since under the dynamic rule every state gets mapped onto exactly
one other state, one draws a directed link from every state to the next state.

Note although each state gets mapped onto exactly one state, multiple (or
zero) states can get mapped onto a state. For every state we can compute the
pre-image, the states that get mapped onto it and visualize them as branches.
Since eventually the system has to go into a fixed point or a perioded cycle,
this must be at the core of the treelike structure generated in this way.

5.4.9.1 Random boolean network dynamics

We can now see what random networks of this type do. We can fix N = 13 K = 3
chose each nodes input randomly form the 12 remaining nodes and choose
among the 223 = 256 different rules randomly and see what the dynamics of
such a system looks like.

5.4.10 Boolean Networks and gene regulation

A very similar idea is use to model gene regulation, basically the Hopfied net-
work for genetics. In this model, each gene can be expressed of silenced, cor-
responding to the statessi = 1 and 0, respectively. Genes regulate each other,
they can either repress or promote expression of other genes. The simplest
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way to model this is by saying that

Ji j =


+1 if j promotes i

−1 if j represses i

0 if j has no impact on i

Then we define the dynamics as

si (t +1) = 1 if
∑

j
Ji j s j (t ) > 0

si (t +1) = 0 if
∑

j
Ji j s j (t ) < 0

si (t +1) = si (t ) if
∑

j
Ji j s j (t ) = 0

This is a special case of a boolean network.

5.4.10.1 Example Cell

see slides

5.5 Synchronization of oscillators

One of the most interesting and also most difficult to study network systems
are those in which each node is an oscillator. And the key questions is if be-
cause of the coupling through network connections oscillators synchronize
and under what conditions.

5.5.1 Oscillators

Let’s look at some examples of oscillators. The simplest one is the harmonic
oscillator, described by the following equation

ẍ =−kx
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This is a second order linear differential equation which we can write as

ẋ = v

v̇ = −kx

We can easily see that

x(t ) = cosωt

v(t )/ω = −sinωt

with
ω=

p
k.

This is just a simple circular movement which we can also describe by

θ(t ) =ωt

or
θ̇ =ω

This oscillator could for instance describe the dynamics of a clock with angular
frequency ω.

5.5.2 Coupled Oscillators

Let’s first understand what happens when two oscillators are coupled. Let’s
look at two oscillators that are governed by the following two equations

θ̇1 = ω1

θ̇2 = ω2

Now let’s assume that both oscillators interact, such that they are try to align
the angular velocities, for instance if

θ1 > θ2 : this will increase θ̇2and decrease θ̇1

θ1 < θ2 : this will increase θ̇1and decrease θ̇2
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This is accomplished by

θ̇1 = ω1 +K sin(θ2 −θ1)

θ̇2 = ω2 +K sin(θ1 −θ2)

where K is the coupling strength. The synchronmized state corresponds to

θ1(t ) = ωt

θ1(t ) = ωt +α

where ω is the frequency in the synchronized state and α is a potential phase
difference. If we plug this into the equations of motion we get

ω = ω1 +K sinα

ω = ω2 −K sinα

So that

ω= 1

2
(ω1 +ω2)

and
1

2K
(ω1 −ω2) = sinα< 1

This is only a solution if

K > 1

2
δω.

This means two things. For a given frequency difference we have to increase
the coupling beyond a critical value. Right at the critical value the phase lag
between the oscillators is α = π/2. If the oscillators have the same natural
frequency, the oscillate in phase. One can also show that this synchronisation
is stable.

A generalization to multiple oscillators is straighforward, we can write

θ̇i =ωi + K

N

∑
Ai j sin(θ j −θi )

177



5 Dynamical Processes on Networks

where now the matrix Ai j is the adjacency matrix and K determines the cou-
pling strength between oscillators i and j and is generally taken to be sym-
metric. The problem with this model is that it is very difficult to show if syn-
chronized states exist and whether they are stable. This model is called the
Kuramoto model for coupled oscillators.

For a fully connected network Ai j = 1 one can show that all the oscillators
phase synchronize if ωi = ω. If the individual frequencies are drawn from a
distribution p(ω), one can show that the system synchronizes if

K > 2

πp(ω0)

where ω0 is the mean of ω.
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