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1. Dynamical Systems

1.1. General concepts

Since most complex systems involve dynamics, the change of things over time, e.g. in
growth processes in pattern formation in collective motion and behavior, we need to
disscuss some general ideas on how to approach these phenomena mathematically or
quantitatively.

A model dynamical systems is the basic foundation of predictive science. That means:
if we know something about the past, we ca say something about the future. Sometimes
these predictions are probabalistic, e.g. we can only say how the probability of
something occuring evolves over time or how large it will be at some point in the future.
Before we discuss various forms of models, let’s introduce some very general concepts.

• State: ρ(t) This is a quantity that encapsulates the information on a natural
system at some time t

• History: Gt0 = {ρ(t) : t ≤ t0} This is the collection of states of the system for
past times until time t0

• Dynamics: ρ(tn) = Dtn,t0(Gt0), tn > t0 maps history onto future stystem states.
This can be a very complicated function. It takes as an argument the history Gt0
and can depend explicity on the time of prediction t0 and the future time tn

• Time evolution: In most dynamical systems time either evolves
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– continuously −∞ < t <∞or

– discretely tn n ∈ Z (stroboscopic information)

1.1.1. Typical state variable ρ(t)

In most situations the state ρ takes the form of an n-component vector of real numbers,
so for continuous time

ρ(t) = x(t) = (x1(t), ...xm(t))

and for discrete time
ρ(tn) = x(tn) = (x1(tn), ...xm(tn))

This allows us to visualize the dynamics as a trajectory in phase space which is the
vector space spanned by the components of the state vectors.

Sometime, also in this course, the state is given by an entire function, called a field
u(x, t) where x now refers to a position in physical space for example and u(x, t) is the
value of the field at position x and time t. Sometimes we are dealing with multiple fields
at the same time, each one we can think of as the component of a vector field

u(x, t) = (u1(x, t), ..., um(x, t))

For example the state of the system could be the concentration u(x, t) of a substance,
the probability of a particle being at some location x at some time t etc. Also in this
case we can have discrete time an continuous time, or discrete space or continuous space
or combinations of both. We will see examples of all combinations throughout this
course. Additionally, the positional variable x can be generalized to refer to non-metric
coordinates, for example it could label the nodes on a complex network and u(x, t) could
refer to the values of the vector field at node x at time t.
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1.1.2. Markovian dynamics

Very many natural systems evolve according to a dynamics that “forgets” is history and
the new state only depends on the most recent state and not on the entire history. These
systems are called Markovian. In other words the dynamics Dt,t0(Gt0) only depends on
ρ(t0) and not on Gt0 (remember Gt0 = {ρ(t); t < t0})

ρ(tn) = Dtn,t0(Gt0) = Dtn,t0(ρ(t0))

Therefore, in this case the dynamics D maps states onto states.

1.1.2.1. Discrete time

In discrete time this is straighforward to understand and the dynamics can be written as

x(tn+1) = Fn(x(tn)) x(tn) ∈ Rn (1.1)

Note that the dynamics takes the form of a vector function Fn and that this can
explicitly depend on the time index n, meaning that it can change at every time step.

1.1.2.2. Continuous time

In continuous time the above equation takes the form

x(t) = Φt,t0(x(t0))

and the dynamics Φ is called a flow and it is defined for t ≥ t0 and has the peculiar
property of being the identity when t = t0. However, in real applications, one ususally
never discusses these flows. Rather one defines the dynamical systems by specifying the
short time evolution of a state. We say that ∆t is a small time interval and

x(t+ ∆t) = x(t) + ∆t× f(x(t), t) +O(∆t2)

which amounts to

dx(t)

dt
= f(x(t), t) (1.2)

which is an m-dimensional first order system of ordinary differential equations.

1.1.2.3. Field equations

If a system’s state is defined by a field u(x, t) the generalization of the above becomes a
field equation

∂tu(x, t) = f [u(x, t), t]

where f is called a functional which takes as an argument the vector field u(x, t). In this
case f tells us what the entire vector field u(x, t) is going to be, given the function at an
earlier time t0.
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1.1.3. Autonomous dynamics

Autonomous dynamics is a special case in which the functions that map states on new
states do not explicitely depend on time. The system evolves “by itself” without external
input, in discrete dynamical systems this reads

x(tn+1) = F(x(tn))

and
dx(t)

dt
= f(x(t))

1.1.4. Stochastic and deterministic dynamics

When a system evolves stochastically the functions Fn and f(·, t) are known only in
a statistical sense, i.e. one only knows (at best) the probability with which a mapping
occurs from an ensemble of possible mappings. If Fn and f(·, t) are known with certainty,
the dynamics is called deterministic. We will later see that also deterministic dynamics
can behave like stochastic systems.

1.1.5. Rules and function

Sometimes a dynamical system, say of discrete type

x(tn+1) = F(x(tn))

can be expressed using a mathematical function F, for example,

x(tn+1) = sin(x(tn) + 7).

Other times, the “function” F is better expressed as a set of rules. For example if the
state variable is a sequence of 1’s and 0’s say

x(tn) = 0110101001101

8



the rule F could be:

1. Replace all pairs of 1’s with the sequence 10

2. Then replace all triplets 101 with 111

3. Then replace all 00 pairs with 01

1.1.6. Nonlinear Dynamics

The reason why systems governed by

x(tn+1) = F(x(tn))

or
dx(t)

dt
= f(x(t))

are interesting and challenging is because in general the function F and f are nonlinear
and cannot be solved. For example, later we will have a close look at

x(tn+1) = 4x(tn) [1− x(tn)]

which is a very simple quadratic equation but which bears a lot of dynamical surprises.

1.1.7. Notation

In this course we will make use of notations which have become a convention in most
dynamical systems research. Instead of

dx

dt
or

d2x

dt2

we will frequently use the notation:

ẋ(t) =
dx

dt
and ẍ(t) =

d2x

dt2

For partial derivatives we use the notation

∂xif(x) =
∂

∂xi
f(x)

Also instead of writing
ẋ(t) = f(x(t), t)

we will write simply
ẋ = f(x, t)

keeping in mind that a trajectory x(t), a solution to the above dynamical system, is a
function of time.
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1.1.8. Higher Order Systems

Let’s look at continuous time dynamical systems as defined above

ẋ = f(x)

and for simplicity consider an autonomous system. It may appear that a restrictions of
this type would exclude dynamical systems of higher order, e.g.

ẍ = f(ẋ,x)

and example are systems governed by Newtonian mechanics, e.g.

mẍ = F (ẋ,x)

where F is a function that’s acting on an object of mass m. The restriction to first order
is plausible though because any higher order system can be mapped on a first order
system in a phase space of higher dimension. For example we can write

ẋ = p

ṗ = F (p,x)

and the state of the system at time t is given by the pair of vectors (x(t),p(t)) which
has twice the dimension of the x(t).

1.1.9. Asymptotic behavior

Given a dynamical system one is generally interested in the asymptotic behavior, the
long time limit, t→∞. Generally this behavior comes in different flavors.

1.1.9.1. Fixed points

Usually one first tries to find states that do not change under the dynamics. These are
called stationary solutions, fixed points or equilibria. These are points that fullfill

f(x?) = 0

for flows, because that implies that ẋ = 1. And for discrete dynamics it implies

F (x?) = x?

because that also implies in these systems that nothing changes. Fixed points come in
two categories: stable and unstable. Stable means that if we perturb the system away
from the fixed points, the system will go back to it. Unstable means that any arbitrarily
small pertubation will increase and the state will diverge away from it. There are, as
always more exotic situations and definitions of stability but we won’t need those here.
There are covered in courses on dynamical systems theory.
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1.1.9.2. Fixed points as attractors

The system can approach a stationary state, it can happen that

lim
t→∞

x(t) = x?

for some initial condition. Of course a system can have multiple such fixed points. When
they attract a bunch of initial conditions they are called attractors and the set of points
they attract are called basins of attraction. The way that trajectories approach such
an attractor can be different, we will discuss various types of attraction later when we
discuss 2D flows. Here is an example of three attractors that are fixed points:

The black lines indicate tranjectories of the dynamical system. The blue and the purple
stationary or fixed point attract all the trajectories in the area with the same shade. The
red fixed point is a bit different. It only attracts points along the red lines. This fixed
point is unstable, because any arbitrarily small perturbation of a trajectory along the
red line will end up in either the blue or purple attractor. The red line is also called a
separatrix.

1.1.9.3. Limit Cycles

Before we understand limit cycles, we have to know the concept or periodic orbit. This is
a solution to a dynamical system that comes back to a starting point and since we consider
deterministic systems, the evolution will repeat itself. If such a periodic solution attracts
trajectories from elsewhere it’s called a limit cycle. The concept is very straighforward,
geometrically it looks like this:
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1.1.9.4. The Poincare Bendixon Theorem

One of the most fundamental things concerning flows is that 1D flows cannot have peri-
odic orbits, only fixed points and that in 2D the Poincare Bendixon Theorem holds. It
essential states that if we have a 2d system, asymptotically the system can only approach
either fixed points (including ∞) or limit cycles. This is very deep stuff, and we won’t
go into it here. But it’s important to remember that asymptotically nothing more fancy
is to be expected of 2d time continuous flows. You may think that this is obvious but
it’s not. For example something like this:

can actually not occur in 2D which is really weird. This is all only true for flows, not
for maps. In fact, for instance the simple 1d map

xn+1 = −xn

exhibits an infinite number of periodic orbits and the simple map

xn+1 = 4xn(1− xn)

exhibits motion with asymptotically neither approaches a fixed point nor a limit cylce.

1.1.9.5. Quasi-Periodicity and Tori

If our system evolves in high dimension, we can have generalizations of the limit cycle as
an attractor, e.g. a torus which can be thought of a two limit cycles multiplied with one
another:
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This torus can attract a bunch of trajectories, the interesting thing is that trajectories
on a torus no longer have to be periodic. But almost. That’s why they are often called
quasi-periodic.

1.1.9.6. Strange attractors

One might think that the asyptotic behavior of a dynamical system ẋ = f(x) could only
be one of the above. The interesting thing is that some systems also possess strange
attractors which do not fall into the above categories. These are very interesting and we
will discuss them later when we discuss chaotic systems. Here’s a picture of a trajectory
of a system that has a strange attractor:

It looks very simple at first sight, but if you look at it closely you see something is
really strange about it. It looks two dimensional but there are two sheets that fold into
one another and in fact trajectories that approach this attractor are unpredictable in
the sense that one cannot say when a trajectory will take a loop up and when not. The
dynamical system that generates this are actually quite simple in form:

ẋ = −y − z
ẏ = x−Ay
ż = B + z(x− C)

13



1.1.10. Asymptotic behavior of time discrete maps

Essentially the situation is similar when we look at discrete maps (where time is denoted
by the index n).

xn+1 = f(xn).

Here a stationary solution is one for which

xn = f(xn)

and a limit cycle with period M is one for which

xn+M = f ◦ f ◦ .... ◦ f︸ ︷︷ ︸
M

(xn).

This means that we apply the function M times and end up at the starting point again.
We will see, that even the simplest maps can non-periodic behavior that does not ap-
proach a fixed point. Very soon.

1.1.11. Bifurcations

In addition to the asymptotics of a dynamical system, we are often also interested in how
this asymptotic behavior changes with parameters of a system. For example if we have
a system

ẋ = f(x;P)

it typically depends on a set of parameters

P = {p1, ..., pk}.

And for different sets of these parameters the system may behave differently. It is then
important to determine what parameter choices yield what type of asymptotic behavior.
In this, it’s important to determine boundaries in parameter space where this behavior
changes. These are often called bifurcations, for reasons that will become clear soon. For
example, let’s assume we have a dynamical system

ẋ = ax− x3

where a is a parameter. For a ≤ 0 this system has one attractive fixed point x? = 0, every
initial condition will move towards this fixed point. If, however, a > 0 then the system
will have three fixed points, the central one x? = 0 and two additional ones x?1/2 = ±

√
a.

It turns out that in this situation any initial condition x(0) > 0 will approach
√
a and

any initial condition x(0) < 0 will approach −
√
a. We can illustrate this in a simple

bifurcation diagram, in which we illustrate “behavior” as a function of the parameter a:
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1.2. Examples of dynamical systems

Let’s now list a few examples of dynamical systems that fall into the classes discussed
above. All of them are Markovian, some are autonomous, some evolve in discrete time,
some in continuous time, in some the state is described by a field, in some by simple
low-dimensional vectors. Some of them will be discussed in detail later, some are boring,
some hide exciting complex behavior.

1.2.1. The Pearl-Verhulst system

This is the simplest model for the growth of a population of animals or plants in an
ecosystem, but it also has other applications. The state of the system is the density n(t)
of a species. And the dynamical system is given by

ṅ = γ(1− n/c)n

This DS (dynamical system) is a one-dimensional, autonomous continuous time system
with two parameters γ and cWe see immediately that if n(0) = 0 or n(0) = c then ṅ = 0,
which is why these two values are called stationary solutions or fixed points. However,
the first is unstable, and the other is stable, if for instance n(0) = ε > 0 then

ṅ ≈ γn

which is positive and yields an initial exponetial growth. if n(t) approaches c this growth
is slowed down more and more and the system reaches its capacity c. One can solve this,
but one doesn’t have to in order to understand what’s going on.
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1.2.2. The logistic map

Similar to the Pearl-Verhulst system is the analogous discrete time version, called the
logistic map

xn = λxn(1− xn).

This is a one-dimensional autonomous map. Unlike the Pearl-Verhulst system it is actu-
ally a complex system, that can generate behavior much more complex that one would
think just by looking at it. We will discuss this system in more detail soon. For instance,
the following picture was generated with the logistic map:

We will not discuss what this figure shows now. It’s only an appertizer for later.

1.2.3. The simple pendulum

Here’s a simple mechanical system, the simple pendulum subject to gravity. A mass m is
attached to a stick of length L which freely rotates without friction around a pivot at the
point (x, y) = 0. The graviational force F = −mgj acts on the mass (j is the unit vector
along the y-axis). Although this system is so simple and certainly not a complex system
(in fact it can only do very simple types of motion) its oscillatory potential represents
something at the core of many complex dynamical phenomena. In other words, if you
add a littlebit more to this system, it will become quite interesting.
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The equations of motion are derive from Newtonian mechanics

mẍ = F

and the restrictions that

x = L sin θ and y = −L cos θ

With a little bit of geometry one gets a second order ODE for the angular accelaration:

θ̈ =
g

L
sin θ

We can rewrite this as
θ̇ =

p

mL2
and ṗ = −mgL sin θ

which is a first order, two-dimensional dynamical system, the systems state is given by
the pair (θ, p) and the trajectories evolve in the plane spanned by these two coordinates.
This particular example has the special feature, that one variable, θ, lives on the circle
S = (−π, π] and not the ordinary infinite line. Although this system can be solved
analytically, again, one doesn’t have to do it to understand what’s happening. In the 2D
phase space trajectories look like this:

For small amplitudes the trajectories are circles, corresponding to small amplitude
swinging motion. If p is large enough, the pendulum “flips” and keeps on rotating in one
direction.
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1.2.4. The kicked rotator

Here’s a system related to the pendulum, but again a discrete version, this time a 2D
map.

pn+1 = pn +K cos(xn) mod 2π

xn+1 = xn + pn+1 mod 2π

We will not discuss here, how this equation, called the standard map arises, we will
discuss this later in detail. For now, know that it is somewhat related to the pendulum in
which instead of the continuous action of gravity on the pendulums mass, periodic kicks
of strength K are transfered to the pendulum. Interestingly, this simple two dimensional
system is capable of generating complex behavior, as we see here:

This picture depicts the sequence of points generated by the above map in the x, p
plane for a bunch of random initial conditions. We will discuss the structure of this in
more depth later.

1.2.5. The Fisher equation

Here’s an example where the state of the system is not simply given by a vector of
numbers x(t) but rather a whole function u(x, t) that is defined across space. Space
could be 1,2,3 or n-dimensional space. Let’s consider 1d. This equation

∂tu = λu(1− u) +D∂2
xu

where u = u(x, t) is very famous. It combines the Pearl Verhulst system (the first term)
for a concentration u(x, t) with diffusion (the second term). It’s a reaction-diffusion
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system. The diffusion term implies that the concentration flows from high to low. So for
example with we only have diffusion (λ = 0):

∂tu(x, t) = D∂2
xu(x, t)

and we consider a discretization of space x = n∆x then

u(x, t+ ∆t) ≈ u(x, t) +
∆t

(∆x)2 ×D × [u(x+ ∆x, t) + u(x−∆x, t)− 2u(x, t)]

this means that the concentration around x increase by particles coming in from the
right, u(x + ∆x, t) from the left u(x − ∆x, t) and leaving into both directions 2u(x, t).
More about this later. In higher dimensions the Fisher equation reads

∂tu = λu(1− u) +D∇2u

where
∇2 =

(
∂2
x + ∂2

y + ....
)

The interesting feature of this equation is that it can generate waves that propagate at
a constant speed:

Although the potential of generating propagating wave is interesting and not directly
visible in the equation, it does not qualify as complex behavior. However, just like before,
it carries the potential of generating complex behavior, as we see in the nect example

1.2.6. The Gray-Scott system

The Gray Scott Model is structurally very similar to the above example. It’s a two
dimensional reaction diffusion system:

∂tu = −uv2 + f(1− u) +Du∂
2
xu

∂tv = uv2 − (f + k)v +Dv∂
2
xv

where the dynamic state variables are the fields u = u(x, t) and v = v(x, t), usually
2d systems are considered, and f, k are two positive parameters and Du, Dv are the
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diffusion constant for each state variable. Later, we will discuss the motivation behind
these equations in very much detail. For now, we just want to understand that these
equations aren’t much more complicated than the Fisher equation. However, they can
generate and whole zoo of different behaviors, in this case a whole zoo of different patterns
of u and v. Some examples:

1.2.7. Lindenmayer systems

Here’s another type of dynamical system, which is very different in structure and more
computer sciencish although the applications are predominantly in biology and mathe-
matics. In fact Aristid Lindenmayer was a biologist and used these systems to describe
the bodyplans of plants. A Lindenmayer System, also just called L-system essentially con-
sists of variables, constants and rules and an initial condition (sometimes called axiom).
The state of the system is typically a string σn of arbitrary size. A simple Lindenmayer
system is this one:

A → ABA

B → BBB.

Given an initial string σ0 for example

σ0 = A

we apply rules iteratively and evolve the system this way:

σ1 = ABA

σ2 = ABABBBABA

σ3 = ABABBBABABBBBBBBBBABABBBABA

σ4 = ...

We can see, that the states’ representation becomes very long very quickly. This seems
like a game, but it becomes interesting, when we give an interpretation to the symbols.
With this type of dynamical system we can generate interesting shapes like these two:
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1.2.8. The Viszek model

Finally, here’s another interesting example of a dynamical system. This one is a many
particle system, or system of agents. Every agent i = 1, ..., N has a position xi(t) a
heading angle θi(t). Every particle moves at the same speed v. Assuming that everything
is taking place in the plane, the dynamic state of the system say X(t) is therefore given
by 3N numbers

X(t) = (x1, θ1, ...,xN , θN )

Now we let these particles move and interact. First, the move into the direction of their
heading

xi(t+ 1) = xi(t) + vi(t)

where

vi = v

(
cos θi
sin θi

)
They interact by changing their direction according to the average 〈θ(t)〉r heading of
their neighbors (particles within a radius r) plus some random change σ∆θ.

θi(t+ 1) = 〈θ(t)〉r + σ∆θ

where ∆θ is a uniform random number between 0 and 2π and σ a constant parameter.
This system generates different types of behavior, some of which is complex, e.g. it
exhibits the ability for the individual particles to perform collective motion into one
direction. We will study this type of system in detail later, here are two states of the
system for different parameters:
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1.3. One-dimensional flows

Let’s now investigate the class of dynamical systems in which the state is just the number
x and the dynamics are given by

ẋ = f(x)

What can we expect from simple systems of this type?

1.3.1. Absence of Oscillations

First let’s ask if ẋ = f(x) can have oscillations. Answer: No, because for chosen x1 =
x(t1) and x2 = x(t2) with x1 = x2, we must have f(x1) = f(x2), but for oscillations
to occur, there must exist points where x1 = x2 where ẋ1 6= ẋ2, but this is forbidden.
Therefore, for regions/intervals of x, x(t) must be monotonically increasing or decreasing
or remain fixed.

This raises the question about what happens at the points that separate these regions.
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1.3.2. Fixed Points

Fixed points are the solutions of the equation

ẋ = f(x) = 0

Of course a given system can have none, one, a few, many or an infinite number of fixed
points. Those can be either computed analytically or determined by drawing f(x) and
observing when it hits the x-axis.

For example ẋ = x4 + 1 has no fixed points, ẋ = −x − x2 has two fixed points:
x∗ = −1, 0, ẋ = sin(x) has an infinite number of fixed points x∗ = nπ, n = 0,±1,±2, ....

1.3.3. Stability of Fixed Points

Stability of fixed points can be determined from the graphics as well by noting that
ẋ > 0 =⇒ f(x) > 0 means x(t) increases, and ẋ < 0 =⇒ f(x) < 0 means x(t) decreases.
This picture gives an idea of stability.

A fixed point is said to be stable is, for a small region U(x∗) of a fixed point x∗ all
x(t) −→ x∗ if x(0) ∈ U(x∗). There are more sophisticated definitions of stability which
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we won’t get into here. We can see from the picture that a fixed point is stable if

df(x)

dx

∣∣∣∣
x=x?

< 0

and unstable otherwise. If the derivative is exactly equal to zero, the situation is a bit
more subtle.

1.3.4. Finding solutions analytically

In the 1d time continuous case one can always try to integrate the dynamical system,
writing

ẋ = f(x) =
dx

dt

and after separating variables

t− t0 =

ˆ x(t)

x0

dx

f(x)

We can try to solve the right hand side of this equation, but have to be careful when we
integrate across fixed points f(x∗) = 0. So for instance the Pearl-Verhulst equation

ẋ = λx(1− x)

gives

λ(t− t0) =

ˆ x(t)

x0

dx

x(1− x)

λ(t− t0) = log
x(t)(1− x0)

(1− x(t))x0

which yields

x(t) = x0
eλ(t−t0)

1− x0(1− eλ(t−t0))

which gives no more information than just drawing f(x) as a function of x.

1.3.5. Finding (approximate) solutions numerically

Given dynamical system ẋ = f(x), ee can attempt to solve the dynamical system for
an initial value x(t0) = x0 numerically. We split time into little discrete increments of
length ∆t, i.e. tn = t0 + n∆t, and n = 0, 1, 2, .....Then

x(t0 + ∆t) ≈ x(t0) + ∆tf(x(t0))

Letting
xn+1 = xn + ∆t f(xn) and x0 = x(t0)
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we obtain an approximate solution. This is known as Euler’s method. The accuracy is of
der order ∆t, that means if we for example pick ∆t = 0.01 then after N = 100 steps the
error will be or order unity which isn’t so good. Much better are Runge Kutta methods,
e.g. the second order Runge-Kutta method in which we advance the trajectory based on
the dynamics at the midpoint of the interval. Let’s call the state at the midpoint x̄n and
the dynamics f(x̄n). We then define

xn+1 = xn + ∆tf(x̄n)

But how do we find the midpoint? Well, we can’t. Only approximately. We advance to
the midpoint with ordinary Euler:

x̄n = xn +
∆t

2
f(xn).

It’s fairly straightforward to show that this method has an accuracy of the order ∆t2 so,
again, if we let ∆t = 0.01, we could integrate 10000 steps before the algorithm breaks
down. Based on the same idea is the algorithm typically used in applications. It’s
accurate to 4th order ((∆t)4 error) and is called the RK4. The idea is just like the second
order RK, building on functional values of many mid points:

xn+1 = xn +
1

6
(K1 + 2K2 + 2K3 +K4)

K1 = f(xn)∆t

K2 = f(xn +
1

2
K1)∆t

K3 = f(xn +
1

2
K2)∆t

K4 = f(xn +K3)∆t

Some of matlab’s “ode” solvers use this method.

1.4. Bifurcations in 1d autonomous flows

Let’s assume we have

ẋ = f(x;µ)

that only depends on one parameter µ. Since 1D flows are determined by the set of fixed
points F , we can use them to see how the behavior changes as µ is varied (i.e. how the
set of fixed points and the stability changes).
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1.4.1. Saddle node bifurcations

Let’s study this in a simple model:

ẋ = f(x) = x2 + µ

If we plot f(x) for different values of µ we see that three different scenarios emerge:

This type of bifurcation is known as a saddle-node bifurcation. When µ < 0 two
fixed points exist, one is stable on is not. As µ is increased these fixed points approach
each other and when µ = µc = 0 the system has one fixed point that attracts everything
from the left but repels everything on the right. It’s unstable. When µ is increased
further, the fixed point disappears. in a sense, the stable and unstable fixed points
annihilated. This is the bifurcation diagram, that tells use the dynamics as a function of
µ.

A saddle-node bifurcation is fairly general. It always occurs when a parameter change
induces an extremum of f(x) to cross the abscissa like here:
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1.4.2. Transcritical bifurcation

In addition to the saddle node bifurcation there’s one called transcritical. This is when
a stable and unstable fixed point collide and interchange their stability proerties. Here’s
and example:

ẋ = f(x;µ) = µx− x2 = x(µ− x).

This guy always has a fixed point at x = 0 and one at x = µ. However, for µ < 0 this
second fixed point is on the left of the origin and for µ > 0 it’s on the right. If we draw
it if looks like this:

The red dot denotes an unstable fixed point, the blue one a stable fixedpoint. Ir we
look at the bifurcation digram, we see that the fixed points collide and exchange their
stability properties
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The two fixed points do not annihilate, but instead, exchange their stability. This is
called a transcritical bifurcation.

1.4.3. Pitchfork bifurcation

This is one that we discussed earlier. Let’s look at

ẋ = f(x;µ) = µx− x3 = x(µ− x2).

Here we also have always a fixed point x? = 0. However, only for µ > 0 we have two
additional fixed pointx x? = ±√µ. If µ < 0 they do not exist. Here’s the picture that
tells us what is going on:

What happens here is this. Let’s start with µ < 0. The system has a single stable
fixed point at the origin. As we increase µ this stable fixed point gives birth to two new
stable fixed points at µ = µc = 0 and loses its own stability. The bifurcation diagram
looks like a pitchfork which is why this type of bifurcation is called what it’s called:
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It can also happen that an unstable fixed point gives birth to two new unstable fixed
points and in this process becomes a stable fixed point.
Saddle node, transcritical and pitchfork bifurcations are the most important bifurca-

tions in 1d systems. There are more types of bifurcation but they are not as common.

1.4.4. Hysteresis

So far, when we change parameters of a system that is in some equilibrium state x? the
value of this equilibirum changes slowly, even as we pass a critical point. However, the
existance and interplay between bifurcations can yield some interesting behavior when
many bifurcations exist. Without looking at any equations, let’s imagine we have the
following bifurcation diagram:

This is a system that has a stable fixed point at the origin for small values of µ. This
point attracts all trajectories. As µ is increased to saddle node bifurcations occur and a
regime emerges that has three stable fixed points (blue) and 2 unstable ones (red). Each
of the three stable fixed points have a different attractor basin. Now imagine the system
is in the x = 0 state and we perturb it a little. If the perturbation is small then the
system will relax back to x = 0. However has we increase µ the system will undergo a
pitchfork bifurcation and in response to any small pertubation (noise e.g.) the system
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will make a giant leap to one of the other stable fixed points, because the x = 0 fixed
point is no longer stable. This means that in response to a small parameter change in µ
across the second critical value can yield a giant response. More interestingly, if I now
decrease µ again below the second critical value, the system will not go back to the x = 0
state. I have to decrease µ until the saddle nodes disappear. At that stage the system
will, again, make a giant leap back to x = 0 in response to a small change in µ. This
effect is called hysteresis:

1.5. Two-dimensional systems

We discussed earlier that in 2D flows, we can have richer dynamics but asymptotically
we can only have fixed points or periodic orbit, or limit cycles because of the Poincare
Bendixon-Theorem. So let’s briefly discuss systems that look like this

ẋ = f(x, y)

ẏ = g(x, y)

The state trajectories evolve in the x-y-plane.

1.5.1. Nullclines

The first thing we do when we analyse 2D flows is trying to find all the fixed points, so
points (x?, y?) that fullfill

f(x?, y?) = g(x?, y?) = 0

Sometimes this is easy. Sometimes this is hard. One way to approach this graphically is
by considering the nullclines, the x−nullcline and y−nullcline. These are curves in the
plane that are implicitely given by

f(x, y) = 0

and
g(x, y) = 0,

these are curves in the plane which the solutions to the dynamical system have to cross
parallel to the y and x axis, respectively and all the fixed points are given by their
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intersection. If one is lucky one can express these nullclines as functions y = φ(x) or
x = ψ(y), but this is not always the case.

1.5.2. Stability of fixed points

In 1D systems we had a very simple condition for the stability of a fixed point given by
the sign of the derivative

df(x)

dx

∣∣∣∣
x=x?

.

For stable and unstable fixed points this derivative has to be negative and postivie
respectively. In 2D there’s a similar condition, in fact we can consider a system in
any dimension. So let’s assume that we have a dynamical system

ẋ = f(x)

with a fixed point x?, so f(x?) = 0. Now let’s assume we start the system off in the
vicinity of the fixed point and evolve it

x(t) = x? + εy(t)

where ε� 1 and y(0) = y0. Now, we are interested in what happens to y(t)

dx

dt
= ε

dy

dt
= f(x? + εy(t))

≈ f(x?) + εJ(x?)y(t)

and thus
ẏ = J(x?)y

in the vicinity of the fixed points. the matrix J(x?) is the Jacobian of f(x) at the fixed
point. The elements of the matrix are given by

Jij(x
?) =

∂fi(x)

∂xj
.
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So for example, let’s say we have a dynamical system

ẋ1 = x2 = f1(x1, x2)

ẋ2 = x1(1− x1)− x2 = f2(x1, x2)

This system has a fixed point at (x1, x2) = (1, 0) and at the origin. The Jacobian is given
by

J(x) =

(
∂x1f1 ∂x2f1

∂x1f2 ∂x2f2

)
=

(
0 1

1− 2x1 −1

)
which is for the first fixed point

J(x = (1, 0)) =

(
0 1
−1 −1

)
and for the second fixed point

J(x = (0, 0)) =

(
0 1
1 −1

)
Let’s look at the above equation again:

ẏ = Jy

This is a linear system of equations. And for those we know from ODE theory that this
has a solution for which y(t) → 0 if all the eigenvalues have negative real parts. So, if
we have a fixed point x? and the Jacobian J(x?) and a set of eigenvalues λ1, ..., λ2 if
all of those have negative real parts then the fixed point is asymptotically stable. If on
the other hand, the real part of at least one eigenvalue is positive, the fixed point is not
stable, because trajectories leave the fixed point for almost all perturbations.

1.5.2.1. Solving the linear system

In order to understand a bit better the condition of the eigenvalue’s consider the following
approach. Let’s make an ansatz for a solution to

ẏ = Jy

given by
y(t) = y0e

λt

Plugged into the above equation gives

λy = Jy

so, this is a solution if y is an eigenvector of J with eigenvalue λ. This particular solution
will only tend to zero, if Re(λ) < 0. Now, generically we have in an n-dimensional system
n linearly independent eigenvectors with corresponding different eigenvalues. Generically.
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Sometimes different eigenvectors exist for the same eigenvalue. Let’s not consider those
for th moment. If these eigenvectors yk with k = 1, ..., n are linearly independent they
form a basis in phase space and any solution to the above ODE is given by a linear
combination

y(t) =

n∑
k=1

ckyk(t) =

n∑
k=1

ckyk(0)eλkt

which means that this solution can only tend to zero if ALL the eigenvalues’ real parts
are negative.

1.5.2.2. Eigenvalues of a 2D matrix

If we have a 2D system the Jacobian is going to be a 2D matrix, say(
a b
c d

)
Let’s call s = a + d the trace of this matrix and ∆ = ad − bc its determinant. The
eigenvalues of a 2D matrix are given by

λ1/2 = s/2±
√
s2/4−∆

so, in order to have a stable fixed point we must have s < 0 and ∆ > 0. Let’s look at
the above example. For the first we have s = −1 and ∆ = 1 so that fixed point is stable.
For the other one we get s < 0 but ∆ < 0 so that one is unstable. Depending on the
values for the trace, one can categorize fixed points into the following subtypes

1.5.2.3. Saddle nodes ∆ < 0

These are unstable fixed points for which one eigenvalue is positive, the other negative,
and the local dynamics looks like this:

1.5.2.4. Stable node 0 < ∆ < s2/4 and s < 0

In this case both eigenvalues are negative and in the vicinity of the fixed point the
dynamics looks like this
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1.5.2.5. Unstable node 0 < ∆ < s2/4 and s < 0

In this case both eigenvalues are positive and in the vicinity of the fixed point the
dynamics looks like this

1.5.2.6. Stable spiral: s2/4 < ∆ and s < 0

if this is the case, the expression in the √ becomes negative and the eigenvalues are
complex and complex conjugates to one another, with a negative real part. The imaginary
part introduces oscillatory behavior, the negative real part damps it down. We have a
stable spiral:
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1.5.2.7. Unstable spiral s2/4 < ∆ and s > 0

This is just the same, but the oscillatory behavior is ammplified, to the spiral looks like
this:

1.5.2.8. An interesting case is when s = 0 and ∆ > 0

In this case the eigenvalues are purely imaginary and in the vicinity of the fixed point
we may expect periodic orbits. These fixed points are called centers:

So, in summary, we first have to compute the nullclines, see where they intersect, then
we’ve got the fixed points. Next we compute their stability and then we already have a
pretty good grasp of what’s going on.

1.5.3. Example: Damped Duffing Oscillator

Let’s look at this system which will become important later.

ẋ = y

ẏ = −y + x− x3

the nullclines are given by the two curves φx(x) = 0 (the x-axis) and φy(x) = x − x3

which intersect at 3 different points, (0,0),(-1,0),(1,0), so there are three fixed points. For

35



the stability, we have to investigate the Jacobian at these points. The Jacobian is given
by

J(x, y) =

(
0 1

1− 3x2 −1

)
So the fixed point (0, 0) has trace s = −1 and ∆ = −1 which means the fixed point is
unstable. The opposite is true for the other fixed points because for those ∆ = 1. In fact
thise means that the origin is a saddle, and the other one are stable spirals.

1.5.4. Periodic Solutions

One of the things that can exist in 2D systems are periodic solutions. Let’s look at this
system

ẋ = x(b− py)

ẏ = y(rx− d)

with constants b, p, r, d > 0 This system is known as the Lotka-Volterra system. It can
be used to model the dynamics of a two-species ecosystem where x(t) is the number of
prey animals and y(t) a predator species. Both equations say that both species reproduce
at rates that depend on the concentration of the other species. The rate of reproduction
of the prey is given by b− py. This means that there’s a constant reproduction rate that
is decreased with the number of predators. The predator reproduction rate is rx − d
which means that predators reproduce proportionally to the number of prey and die at
a constant rate d. First thing we do is try to find fixed points. These are given by

(0, 0) and (d/r, b/p).

Here’s something to interpret already. The trivial fixed point is clear. No species is a
stationary solution. The other says, in this this equilibrium the number of prey increases
with the death rate of the predator and decreases with the reproduction rate r of the
predator. The predator number increases with the birth rate of the prey and decreases
with the predation rate p.

1.5.5. Plotting Nullclines

The next thing we do, in order to get an idea about the dynamics, is plot the nullclines of
x and y. These are curves in where ẋ = 0 and ẏ = 0, respectively, called the x-nullcline
and y-nullcline. The nullclines meet (obviously) in the fixed point. Trajectories of the
system have to traverse the x-nullcline parallel to the y-axis the opposite is the case for
the y-nullcline. The nullclines split (in this system) phase space in 4 regions defined by
the sign of ẋ and ẏ. By drawing arrows on the nullcline crossings we already see that
this system has some potential for periodic orbits:
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In fact, if we compute some trajectories numerically we see that different periodic
orbits exists depending on the initial condition consistent with the overall picture that
is suggested by the nullclines:

The potential of oscillations in this system is very generic in systems with two inter-
acting quantities that follow an activator inhibitor scenario. In this particular case, we
can think of the predator inhibiting the prey, and the prey activating the predator and
themselves. This is the mechanism that produces oscillations:
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1.5.6. Example: Duffing Oscillator

Let’s look at the following dynamical system

ẍ = βx− αx3 − δẋ

where α, β, δ > 0 are parameters. This is the dynamic equation that describes the motion
of an oscillator subject to a force

f(x) = βx− αx3

This force means that the oscillator is repelled from the origin by the linear term and
attraced by the cubic term. The term −δẋ describes the friction in the system. We can
write this equation as

ẋ = y

ẏ = βx− αx3 − δy

1.5.6.1. Fixed points and their stability

Again, we first find the fixed point all of which will have y = 0 (x-nullcline) and x = 0
and x = ±

√
β/α. We find the stability using the Jacobian

J(x, y) =

(
0 1

β − 3αx2 −δ

)
At the origin this is

J(0, 0) =

(
0 1
β −δ

)
with trace s = −δ and determinant ∆ = −β. So this fixed point is a saddle (unstable)
for all parameters. For the other fixed points we get

J(±
√
β/α, 0) =

(
0 1
−2β −δ

)
so the traces is s = −δ and the determinant is∆ = 2β > 0 which means that these fixed
points are stable. Recall that when

∆ > s2/4

β > δ2/8

we have stable spirals, because the eigenvalues have a complex component. The overall
behavior in phase space looks like this:
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Note the stable spirals on either side and the saddle node in the middle. The green line
is the attractive part of that node and it separates the basins of attraction of the other
two fixed points. Here’s something to observe in this system which will be essential when
we investigate this system as a potential for chaotic dynamics. Note the orange region
in the top right. We can have initial conditions that are very close, in this case near to
the green line, but they have very different fate, their trajectories separate, which is why
the green line is called separatrix. So there is divergence in fate. On the other hand, for
different initial conditions that are far apart we can hape the opposite effect, convergence
to one of the fixed points. This combination of separation and convergence at play at the
same time is very important for chaotic motion in dissapative, driven systems, which we
will discuss using this example in more detail. Here’s a picture of the attractor basins:

1.5.7. Example: Gene regulation

In developmental biology it is of interest to understand how genes regulate each other.
In a cell, a gene A and express a protein which can enhance or inhibit the expression
of other genes, including gene A itself. Because of this mechanism, it is possible that
cells with the same genome have different phenotypes, for instance liver cells, stem cells,
pancreatic cells, skin cells etc. One mechanism that is very important is the interaction
of two genes, say A and B that enhance their own expression but inhibit each other:
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Let’s denote by x and y the expression levels of gene A and B, respectively. We can
model this as a dynamical system

x = −γx+ α
x2

1 + x2
+ β

1

1 + y2

y = −γy + γ
y2

1 + y2
+ δ

1

1 + x2

The first term in each equation model a constant decay, taking account of the effect
that proteins break down. The second term (first equation) means that the higher the
expression level, x� 1, the higher the input, i.e. self excitation. The third term accounts
for the inhibition, if y � 1 that close to zero, much smaller than when y � 1. Depending
on the parameters this system can have between 1 and 3 stable fixed points. Here are
two phase plots corresponding to a parameter set that has three stable fixed points. In
one, both x and y are high, and in the other two one gene expression is high and the
other is low:
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2. Random Walks and Diffusion

In order to understand the dynamics of complex systems we have to understand the
basics of stochastic processes. This art is concerned with the description of random
time-evolution. It is essentially probability theory as a function of time. So instead of
random numbers, stoch. processes are random variablesX(t) that change over time. And
again, sometimes time is continuous and sometimes discrete, so a process is a sequence
Xn of random numbers.

2.1. Simple Random Walks

The best way to introduce random motion is by investigating a random walk process.
This is a process where at each discrete time step n a randomly chosen increment gets
added to the position of the walker

Yn+1 = Yn + Xn

where the starting point Y0 = x0 is usually taken to be the origin, i.e. x0 = 0. And
the increments Xn are each drawn from the same probability distribution p(x) and it is
assume that the increments are independent. The above equation can be “integrated”
and gives

Yn =
n∑
k=0

Xk.

Let’s assume that the increments have zero mean

〈X〉 =

ˆ
dxx p(x).

and some variance 〈
X2
〉

=

ˆ
dxx2 p(x) = σ2.

Let’s compute the mean and variance of Yn:

〈Yn〉 =

〈
n∑
k=0

Xk

〉
=

n∑
k=0

〈Xk〉 = 0
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and

〈
Y 2
n

〉
=

〈∑
k,l

XkXl

〉
=
∑
k,l

〈XkXl〉

=
∑
k=l

〈XkXl〉+
∑
k 6=l
〈XkXl〉

=
n∑
k=1

〈
X2
k

〉
+
∑
k 6=l
〈Xk〉 〈Xl〉〈

Y 2
n

〉
= nσ2

So the variance increases with stepnumber n. This also means that the typical distance
from the starting point is √

〈Y 2
n 〉 = σ

√
n.

That means for 4 times the number of steps, the walker only doubles it expected distance.
This is true, irrespective of the shape of the pdf for the single steps p(x). Let’s discuss
a few examples of a random walk on a line, i.e. a one dimensional random walk

1. Let’s assume that at each time step the walker makes a step that is drawn from a
gaussian distribution with zero mean and variance σ2

p1(x) =
1√

2πσ2
e−

1
2
x2/σ2

2. We could also have a random walker that makes steps of fixed length, but random
direction

p2(x) =
1

2
[δ(x− σ) + δ(x+ σ)]

where δ(x) is the Dirac delta function which is defined as

δ(x) =
{

0 for x 6= 0

and ˆ
dxδ(x) = 1,

essentially this is a function that is everywhere zero, except for at the origin, where
it is infinite. Another property of it is that

f(y) =

ˆ
dx δ(y − x)f(x).

so that for this pdf we have〈
X2
〉

=
1

2

ˆ
dxx2 [δ(x− σ) + δ(x+ σ)] = σ2
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3. Finally let’s consider a pdf that has exponentially distributed steps

p3(x) =
1

2σ
exp [−|x|/2σ]

In this case we have 〈
X2
〉

=
1

σ

ˆ ∞
0

dxx2 e−x/2σ = σ2

So all of these three random walks look different. Here are three pictures of two dimen-
sional variants generated with netlogo:

We clearly see, e.g. that the read trajectory is different from the other two but those
do also differ in shape. In the red trajectory, the walker goes back, forward, left and
right with equal probability. In the black, the walker picks a random direction and then
makes a step of a length that is exponentially distributed, whereas in the blue the walker
picks a distance that has a Gaussian distribution. These distributes are gauged so the
single step variance is the same. Now let’s look at this at a larger scale for a longer time:
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At this scale, the difference are no longer visible, or barely visible. If we go to larger
scales, the trajectories become statistically indistiguishable. This brings us to and im-
portant result called the....

2.1.1. Central Limit Theorem

The sum

Yn =
n∑
k=1

Xk

is a sum of random numbers. The question is, what is the distribution of Yn and how
does it behave as n→∞. The way one can be a bit more precise is to define

Zn =
Yn
A(n)

and ask what is the limiting distrubution of Zn and for what scaling function A(n). The
answer to this is, if we chose A(n) = σn then

p(z) =
1√
2π
e−z

2/2,

the normal distribution. In more intuitive terms this means: The sum of random numbers
approaches a normal distribution as n → ∞, this is why the above processes look the
same in the limit of n→∞.

2.1.2. Time continuous limit

Now, the above random walk approach was derived on discrete time. Let’s now see if we
can derive a time continuous version of it. Let’s assume that we have a time intervale 0
to t and that we split it into n intervals of length ∆t so

tn = n∆t n = 1, ..., N

Let’s identify the position of the walker at step N with Y (t). so

Y (t) = YN =
N∑
n=1

Xn.

We know that the variance of Y (t) is〈
Y (t)2

〉
= Nσ2.

We would now like to perform the limit N →∞ and ∆t→ 0 keeping the typical distance
from the origin only as a function of time (which we consider fixed for now)

d =
√
〈Y (t)2〉 =

√
Nσ =

√
t
σ

∆t
.
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This only works if we let the parameter of the single step length σ go to zero as

σ = D∆t

because in this case
d(t) =

√
Dt

So the trajectories
Y (t) ∼

√
Dt

separate from the distance as the square root of t. Essential this is what the process
does. If a large number of very small impacts influence the position of say a particle,
then these will move a particle a typical distance from the origin proportional to

√
t and

not t.

2.1.3. Adding noise to a deterministic system

Now let’s assume just that. Let’s assume we have a deterministic system that evolves
according to

ẋ = f(x)

For simplicity we consider a 1-d system. That means that after a small time interval ∆t
the position is given by

x(t+ ∆t) = x(t) + ∆t× f(x(t))

Now let’s assume that during the time ∆t, and very large number of small impacts also
moved the particle, each impact moving it equally likely in either direction. This will
add a contribution

∆W (∆t) ∼
√

∆t

so addind both components gives

X(t+ ∆t) = X(t) + ∆t× f(X(t)) + σ∆W

which we can also write as

dX = dt f(X) + σdW

This is called a Langevin equation. What we mean by

X(t+ ∆t) = X(t) + ∆t× f(X(t)) + σ∆W (∆t)

is that in a small time interval, the deterministic force pushes the state a bit forward by
∆t× f(X(t)) and the random influence adds a Gaussian random increment ∆W which
has a variance of ∆t so is or order

√
∆t. The prefactor σ is the magnitude of this impact.

Here’s the picture:
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2.1.3.1. Example: System in a double well

Let’s look at the following 1d system:

ẋ = −dV (x)

dx

This is called a gradient system, and V (x) is a potential. This means the dynamical
system has fixed points where the potential has extrema, i.e. maxima and minima.
Because of the negative sign, x will increase if the slope of V (x) is negative and decrease
if the slope is positive, this means the minima of V (x) are stable fixed points and the
maxima are unstable fixed points. So let’s look at

V (x) =
1

4
ax4 − 1

2
x2 =

1

4
x2(ax2 − 2)

This potential has a maximum at 0 and two minima at ±1/
√

2/a.

The dynamical system reads
ẋ = x− ax3

Now let’s assume that the system also has a noise force which means

dX = (X −AX3)dt+ σdW

so at each time step ∆t in addition to the determinstic evolution we add a gaussian
random variable ∆W with variance ∆t and multiply it by a constant σ. So we draw a
random number from the probability distribution

p(∆w) =
1√

2π∆t
e−

1
2

∆w2/∆t2
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Let’s look at what happens in the analogous system in two dimensions. Let’s look at a
system which is governed by a potential

V (x) =
1

4
ax4 − 1

2
x2

and
ẋ = −∇V (x)

which in components reads

ẋ = −ax3 − axy2 + x

ẏ = −ay3 − ayx2 + y

Now let’s add noise, so

dx =
[
−ax3 − axy2 + x

]
dt+ σdWx

dy =
[
−ay3 − ayx2 + y

]
dt+ σdWy

so at each time step we add two independent gaussian increments. Without the noise
the trajectories will move towards the origin and get stuck at a distance

√
a/2. If we

add a little noise, the wiggle around this stationary ring:

2.1.4. The Wiener Process

The simplest process is one in which the position or state of a system is just determined
by the random gaussian increments ∆W so

W (t) =

ˆ t

0
dW

by which we mean that we are adding an infinite amount of Gaussian increments of
variance dt, so the limiting process of

W (t+ ∆t) = W (t) + ∆W

where the ∆W have a Gaussian distribution with variance ∆t. This process is called
the Wiener process. Of course the process has to start somewhere, say at w0. So each
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trajectoryW (t) has the same initital conditionW (0) = w0, but obviously each trajectory
has a different fate. Now, because the increments have a Gaussian distribution with
variance ∆t then so does W (t) with variance t. The process W (t) can thus be described
by the probability p(w, t|w0, t0) which is the proability that W (t) = w conditioned on
W (t0) = w0. It turns out that in this case

p(w|t, w0, t0) =
1√

2π(t− t0)
e−

1
2

(w−w0)2/(t−t0)

which is a Gaussian that gets broader and broader over time. We can think of W (t) as a
randomly moving particle that started at position w0 at t = 0. Let’s assume t0 = 0 and
w0 = 0 for now and write for the p(w, t) = p(w, t|w0, t0), so

p(w, t) =
1√
2πt

e−w
2/2t.

Now a key thing is that because each realization of the process is different and random,
it makes little sense to define the state of the system as the value of W (t) for one
realization. In fact, what makes more sense, is to define the state of the system by the
pdf p(w, t) which changes over time, too, but deterministically. In fact we can write down
a dynamical equation for it

∂tp(w, t) =
1

2
∂2
wp(w, t).

We can learn a few more things from the pdf dynamics. For example, what’s the mean

〈W (t)〉 =

ˆ
dww p(w, t) = 0

The typical distance from the starting point is given by d(t) =
√
W 2(t)

〈
W (t)2

〉
=

1√
2πt

ˆ
dww2 e−w

2/2t

= t

which means that
d(t) =

√
t

as expected.

2.1.5. The state of a stochastic system

Remember that we discussed that in a dynamical system we can predict the future
knowning the history of a system. Of course in a stochastic system this is impossible due
to the internal unpredictability of the system. Every’s process X(t) is different. This
is why it would be unhelpful to describe the state of the system by X(t). Instead, in a
stochastic process we describe the state of the system by the probability p(x, t) of the
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system having a value X(t). This, unlike the variable X(t) is predictable and evolves
according to a determinstic equation, e.g. the diffusion equation above

∂tp =
1

2
D∂2

xp.

This also changes our notion of equilibrium. Let’s say we have a process like the one
above, in which the dynamics are governed by

dx =
[
−ax3 − axy2 + x

]
dt+ σdWx

dy =
[
−ay3 − ayx2 + y

]
dt+ σdWy

Here’s a picture of the trajectories of a bunch of particles that evolve according to this
dynamical system, each having the same initial condition:

As time evolves the distribution of particles does no longer change and moves to a
distribution which is given by

p(x, y) =
1

N
exp[− 1

4σ2

(
x4 − 2x2

)
].

and the dynamical equation that governs this is known as the Fokker-Planck equation
which reads

∂tp(x, t) = −∇ · F (x)p(x, t) +
1

2
σ2∆2p(x, t)

with an initital distribution of particles given by p(x0, t0) and F (x) = −∇V (x). It is
outside the bounds of this course to discuss how this equation is derived. Here it’s
sufficient that it is possible to derive a dynamical system for the time evolution of this
probability function.

2.1.6. Particle kinetics and Jump processes

In the above examples, the picture was that we had a determinstic system subject to
external noise which took shape in a gaussian pertubation that constantly exerts a ran-
dom change in the trajectory of the system. There are however, other systems in which
randomness plays a role and which cannot be directly modeled like this. Consider a
chemical reaction of two molecules A and B or rather two chemical reactions

A+B
α−→ 2A

A+B
β−→ 2B
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The first reaction means that if two molecules meet, one is converted to the other at a
rate α and the second means the conversions is to B at a rate β. Let’s say we have N
molcules, so nA + nB = N . So what we first notice is that this number does not change,
only the relative components. The dynamic variable that describes the system is the
number of A particles (because the number of B particles is given by nb = N − na).
Let’s assume that these two reaction occur randomly, and let’s assume that at time t the
system is in a state nA(t) = n(t). The three things can happen in a small time interval
∆t:

1. n(t+ ∆t) = n(t) nothing happens with probability p0

2. n(t+ ∆t) = n(t) + 1 which means reaction 1 occured with probability p+

3. n(t+ ∆t) = n(t)− 1 reaction 2 occured with probability p−

Because of this, these processes are called jump processes. Now we need to make as-
sumptions on the probability that each one of the events occured in a small time-interval
∆t, we must have

p0 + p+ + p− = 1

Now in general all probabilities will depend on the number NA N and ∆t. Let’s assume
that

p+ = ∆tαnAnB/N = ∆t× w+(n)

p− = ∆tβnAnB/N = ∆t× w−(n)

p0 = 1−∆t× [w+(n) + w−(n)]

Because nB = N − nA we can write this as

p+ = ∆tαn(N − n)/N = ∆t× w+(n)

p− = ∆tβn(N − n)/N = ∆t× w−(n)

p0 = 1−∆t× [w+(n) + w−(n)]

Now let’s assume that we have an ensemples of such systems evolve over time and it’s in
a state p(n, t) which measures the probability of seeing exactly n particles of type A in
a system. How does this probability change over time

p(n, t+ ∆t) = p0(n)p(n, t) + p+(n− 1)p(n− 1, t) + p−(n+ 1)p(n+ 1, t)

which gives

∂tp(n, t) = w+(n− 1)p(n− 1, t) + w+(n+ 1)p(n+ 1, t)− [w+(n) + w−(n)] p(n, t)

This is called a Master equations. It tells us how the probability changes over time. In
the particular case above it reads
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∂tp(n, t) = α
(n− 1)(N − n+ 1)

N
p(n−1, t)+β

(n+ 1)(N − n)

N
np(n+1, t)−(α+β)

n(N − n)

N
p(n, t)

These type of equations are generally difficult to solve. However one get get an idea of
how the mean 〈n(t)〉 over time

∂t 〈n(t)〉 =
d

dt

∑
k=0

k p(k, t)∑
k=0

k dp(k, t)/dt

= 〈w+(n(t))〉 − 〈w−(n(t))〉

In the case above this means

∂t 〈n〉 = (α− β)

[
〈n〉 −

〈
n2
〉

N

]

so if we let x = n/N then

∂t 〈x〉 = (α− β)
[
〈x〉 −

〈
x2
〉]

This looks almost like
∂tx = (α− β)

(
x− x2

)
the equation we would have expected if no randomness is involved. However, randomness
is involved and generally

〈
x2
〉
6= 〈x〉2.

Instead of trying to solve the master equation one typically uses the algorithm to
generate trajectories that follow the mechanics of the problem. One has to remember
only that the system stays in its state for some time T and then moves to another state.
So, in order to simulate a trajectory we have to know what the time distribution is for
staying in a state, and the probabilities of going up or going down. Given the system is
in a state n(t) the probabililty that it stays in that state for a short time is given by

p0(∆t, n) = 1−∆t× [w+(n) + w−(n)] .

Let’s make this equation a bit simpler by introducing

γ(n) = w+(n) + w−(n)

This is the rate at which the system changes a state.
The probability that it stays in that state for exactly a time T and then leaves the

state is computed the following way. We say that T = k∆t then

p(T, n) ≈ (1−∆t× [γ(n)] .)k γ(n)∆t.
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which becomes
p(T, n) = γ(n)e−Tγ(n)dt

So the probability distriubtion for the waiting times is an exponential the rate parameter
γ(n) of which depends on n. But after time T into which state is the system going to
go? This is given by

Q+ =
w+

w+ + w−
and Q+ =

w−
w+ + w−

This means that we can simulate this system in the following way.

1. First we set the initial conditions n(0) = n0

2. Then we draw a random waiting time from the expoential distribution

p(T, n(0)) = γ(n(0))e−Tγ(n0)

3. then we compute the next state according to Q+ and Q− and set n(T ) to the next
state.

Let’s look at the example above again. We have

w+(n) = αn(1− n) w−(n) = βn(1− n)

so
γ(n) = (α+ β)n(1− n)

and
Q+ =

α

α+ β
Q− =

β

α+ β

And this is what a trajectory looks like:
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2.1.7. Example: Generalized predator prey systm

Let’s see if we can use this approach to model a predator prey system in which we also
have two populations. Let’s assume we have a density nA and nB of prey and predators
respectively and let’s assume that these are discrete numbers, so the count of the two
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populations. Let’s assume that the following reactions can occur at different per capita
rates

A+B
α−→ 2B

B
β−→ ∅

A
γ−→ 2A

2A
δ−→ A

The first reaction models that the predator eats prey and reproduces. The second one
models the death of a predator, the third equation means the spontaneous reproduction
of prey, and the third could model competition for resources among the prey populations.
If we were to set up a determinstic system for this, we would end up with odes that read

ṅA = −αnAnB + γnA − δn2
A

ṅB = αnAnB − βnB

We can simplify this to

ṅA = nA [−αnB + γ − δnA]

ṅB = nB [αnB − β]

which has a stable fixed point at

nB = β/α and nA =
γ − β
δ

if γ > β. Let’s now assume that this system evolves stochastically. The state of the
system is given by (X = nA, nB) and each reaction can induce a state change ∆X which
are given by

∆X = (−1, 1)

∆X = (0,−1)

∆X = (1, 0)

∆X = (−1, 0)

So there are 4 steps the system can take:
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The probability rates at which these events occur, however, are state-dependent and
assumed to be

w1(X) = αnAnB

w2(X) = βnB

w3(X) = γnA

w4(X) = δnA

So the total rate, at which the system leaves a state X is given by the sum

α(X) = nA(γ + δ) + βnB + α(nA + nB).

If we want to simulate this process we first initialize the system in a state X0. The we
propagate the system a time T forward, drawn for an exponential distribution

p(T ;X) = α(X)e−α(X)T

which is state dependent. After time T we know the system makes on of the 4 steps
above with probability

pi(X) =
wi(X)∑
j wj(X)

we pick the step according to this probability and add the corresponding ∆X to the
current state and compute the next waiting time. And dod this forever. This is called
the Gillespie algorithm. For the particular system above, let’s look at some trajectories:
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Part II.

Applications
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3. Synchronization Phenomena

In nature synchronization happens all the time. In mechanical systems, in biological
systems, in epidemiology, basically everywhere. When we talk about synchronization
we usually assume that some sort of cyclical dynamics is going on in the units which
then synchronize. This means, we need to understand first that usually at the basis of
synchronization we are talking about units that if left along perform periodic motion. We
have already discussed that this can happen in the form of limit cycles in two-dimensional
activator inhibitor systems for example. Now let’s assum that we have such an isolated
system that performs dynamics in form of a limit cycle in its own state space.

Now effective we can describe the system by a phase θ the position on its limit cycle.
Clearly this phase variable θ is periodic

θ(t) = θ(t+ T ).

and this phase may have different phase velocity at different times along its period

θ̇(t) = ω(t)

In the simplest form, we have a system that has a constant phase velocity

θ̇ = ω
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3.1. Phase coupled oscillators

Now, clearly if we have many such oscillators, labeled n, each one can have its own
internal ωn and if the oscillators are uncoupled then each one is going to happily move
around in a circle at its own velocity

θ̇n = ωn

θ(t) = ωnt mod 2π

From now own, we are not going to write this mod 2π any more and assume that this
is always the case in these systems. Now the question is, how can these oscillators
synchronize? Clearly thet need to be coupling in some way, to one oscillator can change
the phase of another oscillator, or increase or decrease its speed. To generally we would
have a situation

θ̇n = ωn + fn(θ1, ...θn−1, θn+1, ...., θN )

if we have a total of N oscillators. The key questions is, what kind of couplings fn can
induce synchrony, and what do we mean by synchrony anyway?

3.1.1. Possible flavors of synchronization

What do we really mean by synchronization? In its simplest form, a multi-oscillator
system will evolve into a system in which every unit does exactly the same, i.e.

θn(t) = θm(t)

for all n,m. This also implies that
θ̇n = θ̇m

which means that in the synchronous state, the angular velocities are also identical.
We can, however, also encounter situations in which only the velocities are the same

but the individual pairs on oscillators possess a phase different that is constant

θn(t) = θm(t) + αnm

We will see examples of both.

3.1.2. Two phase coupled oscillators

Let’s look at a system of two oscillators that influence each other

θ̇1 = ω1 + f1(θ1, θ2)

θ̇2 = ω2 + f2(θ1, θ2)

Let’s simplify this a bit. Let’s assume that the coupling functions are the same so

θ̇1 = ω1 + f(θ1, θ2)

θ̇2 = ω2 + f(θ2, θ1)
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Another assumption is that the coupling depends on the phase difference, so

θ̇1 = ω1 + f(θ2 − θ1)

θ̇2 = ω2 + f(θ1 − θ2)

and because the phases are periodic we would like to use a function f that is periodic,
too. Now let’s assume that θ2(t) > θ1(t), which means that the second oscillator is ahead.
If the function f(θ2− θ1) is positive for a positive difference then this will accellerate the
first osccilator and decellerate the second, moving them closer.

So let’s assume
f(x) =

K

2
sin(x)

so

θ̇1 = ω1 +
K

2
sin(θ2 − θ1)

θ̇2 = ω2 +
K

2
sin(θ1 − θ2)

where K > 0. This is a simple version of the so called Kuramoto model. Let’s see what
happens to the phase difference

x = θ2 − θ1

ẋ = µ+K/2 [sin(−x)− sin(x)]

= δω −K sinx

where δω = ω2 − ω1. This dynamical system has a solution on the interval x ∈ [0, 2π] if
we can find a solution to

sinx =
δω

K
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3.1.2.1. ω1 = ω2

Let’s first consider this. In this case we have solutions

x?1 = 0 and x?2 = π

so that means the oscillators are in phase of anti-phase. Because the derivative of − sinx
is negative at the first fixed point, this one is stable the other is unstable. This means
that for any value of the coupling K (arbitrarily small) the oscillators will go into phase
synchrony,

θ1(t) = θ2(t)

and they will move around in their natural identical frequency ω1 = ω2. So, two identical
oscillators will synchronize in the Kuramoto model for any coupling strength K

3.1.2.2. ω1 6= ω2

This is of course the more interesting case. Let’s assume that ω2 > ω1. Looking at the
above equation

sinx =
δω

K

we see that this has only solutions if |δw/K| ≤ 1. so if either the coupling is sufficiently
strong, or the difference in natural frequencies sufficiently small. Let’s assume that we are
in this regime, the the above equation has solutions where the constant δω/K intersects
the curve f(x) = sin(x)

That happens at two points. One is α the other is π − α and

α = sin−1 δω/K

That means, the system will evolve into a state

θ2(t) = θ1(t) + α
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that means the faster oscillator (refering to its natural frequency) is leading the other
one by a constant phase. What are their frequencies?

θ̇1 = ω1 +
K

2
sinα

θ2 = ω2 −
K

2
sinα

which is

θ̇1 = ω1 +
ω2 − ω1

2
=

1

2
(ω1 + ω2) = ω̄

θ2 = ω2 −
ω2 − ω1

2
=

1

2
(ω1 + ω2) = ω̄

so they both compromise and move around at the mean frequency.
We can look at the problem this way. Given to oscillators with ω1 and ω2 we need at

least a coupling strength
K > Kc = ω2 − ω1

such that these two oscillators go into sync.

3.1.3. Many phase coupled oscillators

In most applications we have many oscillators that are coupled, each one interacting with
some or all the other ones at a different strength. We can generalize the above approach
directly to many oscillators labeled n, each one with its own internal frequency ωn in
which case we would have a

θ̇n = ωn +
1

N

∑
m

Knm sin(θm − θn)

The entire complexity of what this system can do is hidden in the coupling Knm. And
depending on this coupling, lots of different things can happen. Before we discuss these
we need to develop ways to measure synchrony in oscillator systems.

3.1.3.1. Measuring the degree of synchrony

The common way of doing this is based on tricks borrowed from complex variables. A
complex variable is essentially a 2D vector that has a length r and a phase θ and can be
expressed as

z = reiθ = x+ iy

Sum’s of complex variables are just sums of little vectors:

z =

N∑
i=1

zi
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The resulting sum, also has a length and a total phase

Z = σeiψ

Now for our system we can assume that every oscillator has a fixed length r = 1/N
and its phase continuously changes over time accordint to θn(t). And we can write

σ(t)eiΨ(t) =
1

N

N∑
n=1

eiθn(t) =
〈
eiθn(t)

〉
If the system evolves into a state in which θn(t) = Ωt+ αn then

σeiΨ(t) = eiΩt
〈
eiαn

〉
which means that

Ψ(t) = Ωt+ Ψ0

is the overall movement of all oscillators and Ω their synchronized frequency. In this case
the prefactor is

σ =
∣∣〈eiαn

〉∣∣
This means that the constant σ is a measure for the phase coherence in the synchronized
state.

3.1.3.2. All to all coupling of identical oscillators

Now let’s assume that all N oscillators influence each other by the same amount and
have the same frequency

θ̇n = ω0 +
K

N

∑
m

sin(θm − θn)

Now let’s assume that we find a solution in which

θn(t) = ωt+ αn
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That means that
0 = δω +

K

N

∑
m

sin(αm − αn)

We can see that ω = ω0 and αn = αm for all oscillators is a solution to the dynamical
system. Is it stable? It turns out that this is indeed a stable solution for all initial
conditions as long as the oscillators have identical natural frequencies.

3.1.3.3. Some results on more general cases

If we have identical oscillators but variability in the coupling strength Knm one can show
that as long as the coupling is symmetric

Knm = Kmn

the dynamics will also always converge to a synchronous state. However, in this case the
oscillators have constant phase deviations. Note that the above equation does not imply
that all the couplings are the same, only pairwise they are. This means that there can
be some spatial heterogeneity, for example the oscillators can be coupled in a network
topology. And indeed, in scenarios like that, oscillators synchronize but with a phase
distribution.
There are a bunch of more results for the Kuramoto model but they go to deep to

discuss them here. Essentially, of one has a distribution of natural frequencies one can
expect that synchronization breaks down if the coupling is too weak. If all oscillators are
identical then they all synchronize but with a potential distribution of phase differences.

3.2. Pulse-coupled oscillators

The above model is phenomenological and assumes that the force by which individual
oscillators influence one another is a smooth function of their phase difference which is
largest when a phase-difference of a pair of oscillators is π/2. In many natural systems
oscillators only interact in small periods of time and in form of short pulses. These
oscillators are called pulse-coupled oscillators. For example the fire-flies only emit a
light pulse which is perceived by the other flies. Another example are neurons which
integrate their inputs and then generate an action-potential which is a short pulse that
is transported via the neuron’s axon and synapses to the receiving neurons which then
integrate this input to generate a spike themselves. The simplest model for a neuron is
the integrate and fire neuron where the quantity of interest is a membrane potential that
follows a dynamics given by

ẋ = S0 − γx

where S0 is a constant input and γ models the decay of the membrane potential, which
is why these neurons are called leaky integrate and fire neurons. The clue is now if the
membrane potential reaches a threshold xc = 1 the neuron fires an action potential and
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the membrane potential is immediately reset to the resting potential of x = 0. If we start
the membrane potential at t = 0 at x(0) = 0 the above dynamical system can be solved

x(t) =
S0

γ
(1− e−γt)

as long as x(t) < 1 if S0/γ > 0 this solution will hit the critical value xc = 1 when

1 =
S0

γ
(1− e−γT )

so at time
T =

1

γ
log

(
S0

S0 − γ

)
at which time the membrane is reset to zero and the system emits a pulse. Such an oscil-
lator left alone will emit pulses continuously at a period T . The curve of the membrane
potential looks like this:

and we can write it

x(t) =
1− e−γt

1− e−γT

We can express time in units T in which the equation becomes

x(θ) =
1− e−γθ

1− e−γ

Now we have to specify what and oscillators pulse does to another oscillator. Lets first
discuss a system of two such oscillators.

3.2.1. Two pulse-coupled oscillators

Let’s look at two oscillators A and B each one being in some phase φ. So let’s call these
state φA and φB. Let’s assume that A is closer to it’s firing time, to φA > φB. We can
visualize this by drawing dots on on the curve in the x, φ plane:
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If A reaches the firing threshold it’s phase is reset to 0 and the membrane potential of
B gets boosted by a value ε > 0. This boost in membrane potential x is equivalent to
an advance in the phase of B

φB → φ′B.

How do we compute the new phase φ′B? We have

x = f(φ) =
1− e−γφ

1− e−γ
.

so the new phase is
φ′B = g(x+ ε)

where the function g(x) is the inverse of f(φ). We can see that under some very general
assumptions this kind of system can synchronize oscillators of the pulse of a firing oscilla-
tor advances the other oscillator sufficiently. However that second oscillator when it fires
will advance the first and in principle they could be racing one another forever. This is
why the function f(φ) has to be concave down. So that the first oscillator advances the
second one more that vice versa. One the both fire together, the will stay in synchony.

3.2.2. Many pulse-coupled oscillators

Now let’s look at N such identical oscillators that are all coupled to one-another. One
can show that if the oscillators are identical then they will eventually all synchronize.
An intuitive explanation is that they can never desynchronize once they are in synchrony
and that eventually clusters of synchronized oscillators emerge that will continue to form
larger clusters.
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3.3. Diffusively coupled oscillators and patterns

Let’s get back to phase coupled oscillators and imagine that each oscillator is on a site
in a 1D lattice: Recall that the dynamic equation is given by

θ̇n = ωn +
1

N

∑
Knm sin(θm − θn).

Now let’s assume that each oscillator only interacts with its neighbors and that these
interactions are all of the same strength, in this case we have

θn = ωn +
K

2

∑
m∈Gn

sin(θm − θn)

where Gn is the set of 2 neighbors of n. Explicity we can write

θ̇n = ωn +K

[
sin(θn+1 − θn) + sin(θn−1 − θn)

2

]
Now let’s assume we have very many of those guys and that as we go from grid to the
nect grid the phase doesn’t change so much. In this case we can use the series expansion
of the sin

sin(x) = x− 1

3
x3....

so the equation is approximately governed by

θ̇n = ωn +K

[
θn+1 − 2θn + θn−1

2

]
If we now identify n with a spatial coordinate xn = n∆x and letK = D/∆x this becomes

∂tθ(x, t) = ω(x) +D∂2
xθ(x, t)

where we interpret θ(x, t) as a continuous array of oscillators that are now diffusively
coupled. This means that the phase “diffuses” to the neighboring locations. The function
ω(x) determines the local natural frequency density of oscilators.

This system also develops synchrony and the spatial pattern is determined by the
strength of diffusion. Depending on the variability of ω(x) we can see that the oscilla-
tor field converges to oscillatory behavior with a uniform frequency but with a phasic
decoherence, just like in the original phase coupled system.

3.4. Coupled Limit cycle systems

Let’s now investigate a system that helped us motivate the phase model as well as the
pulse coupled system. We discussed that systems, e.g. activator inhibitor systems, that
naturally yield limit cycle behavior are candiates for being modelled just by focusing on
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the phase. Let’s see what happens if we model a full activator inhibitor system in the
sense that we explicitely model each oscillator by

u̇ = f(u,w)

w = g(u,w)

where the variables u,w are the state variables of one oscillator. A simple system that
generates limit cycles if given by

θ̇ = Ω

ṙ = λr(1− r)

where r =
√
u2 + v2 and θ = tan−1w/u, or u = r cos θ and w = r sin θ. We can relate

both coordinate systems by

u̇ = ṙ cos θ − rθ̇ sin θ

ẇ = ṙ sin θ + rθ̇ cos θ

so

u̇ = λ(1−
√
u2 + y2)u− Ωw

ẇ = λ(1−
√
u2 + y2)w + Ωu

This means that u is the activator and w is the inhibitor and trajectories go to a limit
cyctle θ̇ = Ω and r = 1.

Now lets assume that both, u and w are concentrations of a chemical or a species
on some site n. and both concentrations and diffusively change the concentration on
neighboring sites so

u̇ = λ(1−
√
u2
n + w2

n)un − Ωwn +
Du

2
[un+1 + un−1 − 2un]

ẇn = λ(1−
√
u2
n + w2

n)wn + Ωun +
Dw

2
[wn+1 + wn−1 − 2wn]

which means that if the concentration wn+1 and wn are very different the last term is
going to make them closer. Effectively coupling the dynamics at each site. If we now
consider the spatially continuous model this reads

∂tu̇(x, t) = λ(1−
√
u2(x, t) + w2(x, t))u(x, t)− Ωw(x, t) +Du∂

2
xu(x, t)

∂tẇ(x, t) = λ(1−
√
u2(x, t) + w2(x, t))w(x, t) + Ωu(x, t) +Dw∂

2
xw(x, t)
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Patterns generated by this model also exhibit synchronization but what interesting is the
emergence of locations where the phase θ exhibits a singularity. These are pinwheels.
Locations in the fields where oscilators can’t decide what to do. In the long time limit
these singularities can annihilate by moving towards one another. This only can happen
if two of these singularities have the opposite charge.

3.5. Spatially distributed pulse coupled oscillators

The above system, that produces these beautiful pinwheel patterns motivates us to ask
what kind of patterns can emerge in pulse coupled oscillators in which each oscillator is
governed by the equation

ẋ = S0 − γx

when below the threshold xth = 1 and in the regime S0/γ > 1. In this regime every
oscillator fires at a constant period. Now lets assume that on a lattice each oscillator
receives input only from its metric neighbors in the lattice. This system generates non-
equilibrium patterns that consists either of target or spiral waves. Here’s an example:
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Why is this happening. The spirals are rotating regions of repetative activation. This
happens because in the pulse coupled scenario, even though the coupling is symmetric
between oscillators in terms of strength, the pulse occur only in one direction which
introduces a temporal asymmetry. These spiral patterns are very generic in excitable
systems in which indiviudal units can be pushed above threshold and become active and
feed-forward activation throughout the system. We will talk more about these patterns
in the nect chapter.
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4. Pattern Formation

The last two examples of spatially distributed oscillators serve as a good intro to one of
the most important aspects in complex systems: pattern formation. By pattern formation
we mean that certain systems have the ability to self-organize into spatially structured
states from intitially unstructured or spatially homogenous states. This behavior takes
place all over the place, in physics in chemistry in biology in social science etc. Here we
will discuss the basic ingredient that are necessary for these processes to occur. One of
the patterns that we see in any desert or any beach are ripples in the sand:

One can understand the basic ingredients for pattern formation in this system. Laminar
flows of wind move accross the sand and move individual sand grains with it. Slight
pertubations in the surface have a higher likelihood of collecting these grains increasing
the magnitude of the pertubation and thus increasing the likelihood of catching more
sand. This is a positive feedback effect which is necessary in almost all pattern forming
systems. This example also shows that one needs to put energy into pattern forming
systems, in this case wind. Right behind the pertubation a dip forms, as the probability
of grains collecting there becomes lower. Of course the increasing hills cannot increase
forever and will be eroded at the top. This is the negative feedback that is also required
in pattern formation.
The same thing happens when river beds are formed. There’s a continuous precipi-

tation that falls onto the land and the water streams it forms follows gravity downhill.
Small streams carve a path and the following water will preferentially follow those paths,
too digging deeper into the soil. Of course this can’t go on foverever. The process can
produce valleys that collapse and new valleys will form:
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Let’s discuss a few examples that all show these type of ingredient.

4.1. Examples of pattern forming in nature

4.1.1. Physics

The most known example of spontaneous pattern formation in physics is probably Benard
convection. This happens when a liquid is heated from below at such a high rate that
the heat cannot dissipate through the system fast enough. In this case convetion rolls
or cells emerge that transport the heat to the cooler regions of the liquid where heat is
given off. The cooled liquid then gets pushed to the bottom to be reheated:

This experiment can be easily done by heating oil on the stove and adding metal dust
to the oil. Again we have to add energy to the system and once certain parts of the
liquid start moving upwards this process will be accelerated and other regions have to
move downward to keep the liquid in place. Images of the suns surface show granules
which are exactly these kind of convetion pockets.

4.1.2. Chemistry

There’s an abundance of chemical reactions that, if they occur in a not-well-stirred sce-
nario, have the potential of generating patterns. One such reaction, the most famous
one, is the Belousov–Zhabotinsky reaction. This reaction uses essentially five reactions,

in which particular chemicals in it start oscillating in their concentration. If the reac-
tion takes place in a petri dish, spiral and target wave form. This is because in its essence
this reaction is an activator inhibitor system in which an autocatalytic reaction increases
the abundance of a chemical which in turn increases the abundance of a chemical that
turns this reaction off. Here’s a snapshot of a pattern that the BZ reaction can generate:
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This looks very similar to the patterns we generated with the spatially distributed
pulse-coupled oscillators. And in fact the mechanisms in both systems are very similar.
We will come back to this later.

4.1.3. Biology

Biology is full of pattern forming systems, so we are going to look at numerous examples.

4.1.3.1. cAMP signaling in Dictyostelium discoideum

Dictyostelium discoideum is an interesting organism. It’s a single cell amoeba that, when
nutrient run low excretes a signalling molecule called cAMP which other individuals in
the neighborhood respond to in two ways. 1.) they move up the gradient towards the
source, getting closer to the orignator of the signal and, 2.) the start excreting cAMP,
too. This is positive feedback. Eventually this leads to the aggregation of thousands of
these organisms into a multicellualr organism, a slug like creature that crawls away and
develops into a differentiated mold that forms a fruiting body and a stem, spores that
get carried away by wind. If one measures the concentration of cAMP one sees spiral
waves, just like in the BZ reaction and the pulse coupled oscillators:

4.1.3.2. Orientation Maps in the visual cortex of primates

An interesting pattern is seen on the visual cortex of primates and other higher mammals
that have binocular vision. In the visual cortex signals that come in from the receptors
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in the eyes are processed. It turns out that the visual cortex has a bunch of cells that
respond best to stimuli of a particular orientation, for instance contrast contours that are
horizontal or vertical etc. If one records response strengths from neurons in the visual
cortex one can color code the locations in the visual cortex according to the prefered
stimulus orientation and this is what one gets:

We see a pattern that is reminiscent of the pinwheel pattern we saw in the phase
coupled oscillator lattice. We see singularties, the pinwheels where all orientation meet.
The cool part about thes visual maps is that animals aren’t born with them. These maps
develop after birth and in response to visual stimuli.

4.1.3.3. Patterns on sea shell

Here’s a picture of natural patterns of different snail shells. These shells grow slowly
over time by continuous deposits of material and the distribution of types of material
and interactions between regions in the organism that make the hard material generate
different patterns. This is an example of a growth process that yields complex patterns.
Something we will come back to.

This is an interesting example because not only the patterns on the shels are interesting
but the patterns of the shells themselves which appear to be following some very basic
formation rules. In fact, a whole book was written by one of the pioneers of pattern
formation in developmental biology: Hans Meinhardt. He developed a model for pattern
formation which we will discuss in detail.
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4.1.3.4. Patterns in animal fur

And of course, when we think of patterns in organism we have to mention animal fur:

This picture shows different types of animal fur. Some patterns are spotty, some consist
of stripes of different wavelength. It turns out that will very few dynamic ingredient one
can devise a model that is capable of generating all these patterns at different parameter
values.

4.1.3.5. Biological Morphogenesis

The above pattern in animals are a special case of something a lot more fundamental.
The problem of how multicelluar organisms with a great diversity of function and cell
morphology can develop from a single, homogeneous fertilized egg. First, all cells in a
multicellular organism have the same genome despite the variety in shape and function.
This can be the case because these cells differ in what genes are expressed, i.e. active or
repressed, i.e. inactive. On the way towards an adult organsism, cells differentiate by a
sequential switching off an on of genes. This mechanism is responsible for spontaneouly
introducing differences in embryos. For example in the drosophila melanogaster (fruitfly)
embryo, different genes are expressed in different regions. The combination of expression
levels introduces different cell fates for the cells in specific locations which eventually
governs the development of a full blown fly:
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This process is very autonomous. If one disturbs gene expression in certain locations
one can generate interesting effects, for instance a fruit fly that has a full functioing
middle segment with additional wings:

Or mice with additional digits:

4.1.3.6. Growth of bacterial colonies

Here’s another interesting example of a growing colony of the bacterium bacillus subtilis
in a petri dish of nutrients. The control parameters are the physical properties of the
agar in which the bacteria can move around and the concentration of nutrients. As a
function of motility and nutrient concentration different growth patterns emerge. We will
discuss these types of patterns later when we talk about diffusion limited aggregation
and growth processes:
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4.1.4. Alan Turing

The guy who first thought and published about the origins of spontaneous pattern for-
mation was Alan Turing, who published a seminal paper called “The chemical basis of
morphogenesis”. In this paper, published only shortly before his death, Turing argued
that an abundance of patterns observed in nature, many of the ones mentioned above,
can be generated by the interaction of three different ingredients.

1. Activation

2. Inhibition

3. Diffusion

The basic idea being that essentially two types of agents (e.g. molecules, animals or
other dynamical quantities) interact. An activator that does autocatalysis, which means
this activator generates more of itself. Also, the activator triggers the generation of an
inhibitor. The action of the inhibitor decreases the abundance of the activator. We have
seen examples of such dynamical systems. The clue is that both, activator and inhibitor
can move in space diffusively. So imagine you have a small concentration of an activator
that subsequently generates more of itself and diffuses which may trigger a travelling wave
of activation. However, the inhibitor is also generated and if that inhibitor diffuses faster
it will eventually stop the activator. Activator can diffuse beyond the wall of inhibitor
and generate a new activator nucleation and the process repeats causing a systems of
stripes or rings to emerge. We will discuss how generic this process is by looking at
numerous representative examples.

4.2. Transient and stable patterns

We’ve seen a couple of examples of patterns so far. It’s reasonable to make the distinction
between transient patterns that come and go, and those that stabilize. For instance, in
one if we have a pattern that can be described by a fisher equation

∂tu = λu(1− u) +D∂2
xu
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then for the appropriate initial condition we can observe a propagating wave that will
spread throughout the entire system.

This is an example of a transient pattern.

In one of the homework assignments we looked at a system in which the activity at a
location was increased by the activity in a smaller radius and decreased by the activity
of element in a larger radius. This local excitation and long range inhibition was able to
produce stable stripelike patterns.

In that assignment, though, this mechanism was imposed and we need non-local in-
teractions. In many physical systems, e.g. when particles can only move, e.g. diffuse,
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this non-local interaction doesn’t work. A question is now whether diffusion mechanism
can effectively yield this type of local excitation and long range inhibition. Intuitively
we would expect that this isn’t possible because diffusion usually enhances homogeneous
patterns, i.e. distributions which are initially non-homogeneous go to a more homoge-
neous state. E.g. in the picture below, we’ve got diffusive particles of two types intitally
separated spatially and when they diffuse they mix, yielding a homogeneous distribution.

4.2.1. Ad-hoc stable patterns

Let’s try to construct a system that can potentially generate spatial patterns. Let’s look
at a dynamical system

u̇ = u− u3

this is a dynamical system that has three fixedpoints, the unstable fixed point u = 0
and stable fixed points at u = ±1. Let’s be experimental and look at this system, but
spatially extended.

∂tu = u− u3 + ∂2
xu.

This is what this system generates:

A nice pattern of regions that are either black or white (u = ±1 ). However, this is
not such a surprise because the local dynamics already has two stable solutions and the
diffusion only amplifies the initial condition. In fact these patterns change continuously
and will eventually go into a homogeneous state. More importantly, the question is
whether diffusion can introduce the emergence of a pattern in a system which otherwise
would be homogeneous.
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4.3. The Turing mechanism

It turns out that diffusion can also generate pattern in a system that without diffusion
would be going to a stable homogeneous state. The idea is the following. Essentially
many systems consist of an activator and an inhibitor. Let’s for instance look at

∂tu = u2w − u
∂tw = β − u2w

In this dynamical system u is an autocatalytic chemical that is activated by itself and ω
and degrades spontaneously. When it increases it inhibits w by removing it. This system
has a stationary solution

u? = β and w? = 1/β.

Let’s see if this state is stable we need to compute the Jakobian

A =

(
fu fv
gu gv

)∣∣∣∣
u?,v?

=

(
1 β2

−2 −β2

)
And remember that this is stable if the trace of A is negative and the determinant is
positive

1− β2 < 0 and β2 > 0

This means, the systems stationary state is stable if β > 1. Now let’s imageing that

u = u(x, t) and v = v(x, t)

and that both chemicals can also diffuse with different diffusion coeffients. In this case

∂tu = u2w − u+Du∂
2
xu

∂tw = β − u2w +Dw∂xw.

Now if we distribute the chemicals uniformly then the partial derivatives with respect to
the spatial coordinate vanish and the system behaves like the local system. The question
is, what happens to slight pertubations from the stationary state.
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. Do they get amplified or are they damped down. Let’s see what can happen in the
above system when we simulate it. We pick the parameters β = 1.5 and Dw/Du = 4.
What we see if we solve the above system numerically is that everything moves to the
globally homogeneous state. However if we increase the diffusion of the inhibitorDw = 16
the homogeneous state beomes unstable and a pattern consisting of spots or stripes
emerges.

This is a general effect: If the diffusion of inhibition happens a lot faster than that of
the activator, the system undergoes a Turing instability and patterns emerge which are
called turing patterns. The come in different flavors some of which we will discuss soon.
How can we understand this?
It turns out that with a little math we can and we can in fact derive a set of 4 equations

that can tell us for what parameters a Touring instability will occur.

4.3.1. Another Example

Let’s look at the following system

∂tu =
u2

w
− µu+ ρ+ ∂2

xu

∂tw = u2 − λw + σ∂2
xw

Here u is again an autocatalytic quantity that increases by positive self-coupling. However
it also generates w which if it increases decreases the autocatalytic mechanism. Thus w
is the inhibitor. Again the local system has one stable fixed point which is where the
nullclines

w =
u2

µu− ρ
and

w =
1

λ
u2

meet.
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The fixed point is given by

u? =
ρ+ λ

µ
and w? =

(ρ+ λ)2

λµ2

We also observe in this sytem that when

σ < σc

then the sytem goes into a homogeneous state, but when σ > σc a Turing instability
occurs and spots form.

If we modify this dynamical system a little bit by replacing

u2 → u2

1 + κu2

which means that the autocalytic process saturates and effect introduced by the new
parameter κ the system is able to produce a variety of patters out of the turing instability.
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4.3.2. Conditions for a Touring instability.

We can play with these system and will always find that if the inhibitor diffuses faster
a turing instability will occur. But it’s of course also important to know when. So let’s
see how far we can get by looking all systems of the form

∂tu = f(u,w) +Du∂
2
xu

∂tw = g(u,w) +Dw∂
2
xu

which we can also write as

∂tu = f(u,w) + ∂2
xu

∂tw = g(u,w) + σ∂2
xu

Now we assume one stable fixed point of the spatially homogeneous system:

f(u?, w?) = g(u?, w?) = 0

We have to compute the Jakobian

A =

(
fu fv
gu gv

)∣∣∣∣
u?,v?

and the fixed point is stable if

s = TrA < 0 ∆ = detA > 0

which meanst that
fu + gv < 0

and
fugv − fvgu > 0

These are two conditions on the dynamical system for stability. Now look at spatial
system in the vicinity of uniform solution, meaning that we perturb the system with a
spatial pertubation:

u(x, t) = u? + δu(x, t)

w(x, t) = w? + δw(x, t)
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Let’s pack the two variables into a vector

U = (δu, δw)

Then this vector evolves according to

∂tU = AU +D∂2
xU

with a matrix

D =

(
1 0
0 σ

)
The question is what happens to the pertubation U, is it going to grow or vanish. Let’s
make the following ansatz for a solution

U(x, t) = U0e
λt cos(kx)

If this is a solution to the equation and if Reλ > 0 this solution will grow expontieally
and the pertubation is unstable. If on the other hand Reλ < 0 the pertubation will go
away. We are looking at a pertubation that’s a cosine wave with wavelength 2π/k. We
are doing this so we can see if the behavior of pertubations depends on the nature of the
pertubation. Plugging this into the above equation we get

λU =
[
A−Dk2

]
U

so we need to solve this eigenvalue problem and determine the sign of the eigenvalues.
We have to understand the eigenvalues of the matrix B = A−Dk2. which is given by(

fu − k2 fv
gu gv − σk2

)
= B

We know that the nature of the eigenvalues are determined by the trace and determinant
of the matrix B so the trace is given by

(fu + gv)− k2(1 + σ) = TrB
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and the determinant by (
k2 − fu

) (
σk2 − gv

)
− fvgu = detB

σk4 − (gv + σfu)k2 + fugv − fvgu = detB
σk4 − (gv + σfu)k2 + detA = detB

The steady state is unstable either if

TrB > 0

or if
detB < 0

The trace, however is always negative, because TrA = fu + gv < 0. So we have to find
conditions when the determinant becomes negative. Since detA > 0 the only way for
the determinant to become negative is:

gv + σfu > 0

If, for example
gv < 0

at the fixed point then fu > 0 then the requirement is

σ > 1

which means the inhibitor needs to diffuse faster. Let’s set

p = (gv + σfu) > 0

q = detA > 0

and k2 = z. Then we can write the above equation as

σz2 − pz + q = h(z)

and see what it can look like. We have to see where this guy becomes negative. The
function is a parabola that has an offset q and a minimum at

hmin =
p

2σ
=
gv + σfu

2σ

and it looks like this:
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If we change the parameters we can make this parabola become negativ at a certain
value zc = k2

c which means that pertubation with this wavelength become unstable. The
condition for this happening is when h(z) = 0 and this happens when

p2/q > σ

or
(gv + σfu)2

4(fugv − fvgu)
> σ

which we can write has
(gv + σfu)2 > 4σ(fugv − fvgu)

4.3.2.1. In summary

So that means we have a bunch of conditions:

fu + gv < 0

fugv − fvgu > 0

gv + σfu > 0

(gv + σfu)2 − 4σ(fugv − fvgu) > 0

If these conditions are met, then the homogeneous state is unstable and patterns emerge.

4.3.3. Example

Let’s look at our example

∂tu = u2w − u+ ∂2
xu

∂tw = β − u2w + σ∂2
xw

We have

A =

(
2uw − 1 u2

−2uw −u2

)
=

(
1 β2

−2 −β2

)
and

fu + gv = 2uw − 1− u2

= 1− β2

so the first condition implies β > 1. The determinant is always positive.

∆ = −β2 + 2β2 = β2 > 0
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The third condition reads
σ > β2

and finally the fourth condition is(
σ − β2

)2
> 4σβ2

Or
σ > b2

(
3 + 2

√
2
)
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5. Critical Phenomena

Typically the concept of critical phenomena is associated with physical systems that
undergo phase transitions at particular temperatures and or pressures. For instance from
vapor to liquid to solid. We know that “stuff” consists of molecules and its interesting
that for instance when one cools a vapor in which molecules bounce arround randomly
suddenly make a transition into a liquid state where there are closer together but still
move abount randomly. This transition is a macroscopic phenomenon driven by changes
in the way the microspoic things interact. Thinking about it this way we can also apply
it to all sorts of systems for example social systems, or biological systems.
Critical phenomena are related to the concept of bifurcations that we discussed when

we discussed dynamical systems. Recall the following example

ẋ = x(µ− x2)

For any initial condition and µ < 0 the system will aproach the stationary point x = 0.
Ir we increase µ to a value µ > µc = 0 the system will either go into the one of the
states x = ±√µ. We can think of this system having undergone a critical transition.
Remember there was also the idea or hysteresis. IF we have a bifurcation diagram like
this:

then that means a system will remain in one state until a critical µ is reached and
then will jump discontinously to another state. This is a bit different that a smooth
transitions. Also moving the parameter back, doesn’t make the system go back into
to original state. Although we can observe this sort of behavior in a simple dynamical
system, the characteristic feature is also present in more complex critical phenomena.
Likewise, when we talked about pattern forming systems, we had for instance a critical

value for the ratio of diffusion coefficients beyond which patterns emerged from a desta-
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bilized homogeneous state. This is all good, but this are low dimensional system. The
key feature about what is considered critical phenomena are macroscopic structures from
microscopic largely independent units that also may have a strong random component.

5.1. Example: An epidemic

Let’s discuss the following system first. Let’s first look at what is known as the SIS model
in epidemiology, We assume that we have a population with a fraction of infecteds y and
a fraction of susceptivles x and we assume two reactions occur

S + I
α−→ 2I

I
β−→ S

An ODE system for this is given by

ẋ = −αxy + βy

ẏ = αxy − βy

which we can write as a 1d system

ẏ = αy(1− y)− βy

ẏ = αy

(
1− β

α
− y
)

This system always has the disease free state y = 0 as a fixed point and also, if β/α < 1
also the fixed point

y = 1− β

α

This means if we consider
R0 =

α

β

then if
R0 > Rc0 = 1

the system has infecteds and no infecteds if R0 < 1. The question is now whether this is
observed in a situation in which we are actually dealing with very many “agents” that act
randomly like molecules in the water. This is best done in an agent based simulations.
Imagine we have a grid in which grid points

uij

can have two states S or I and we randomly update each grid point according to the
following rules

1. If uij = I then with probability β that gridpoint will go to state S
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2. If uij = S the site picks a random neighbor and if that random neighbor is I then
the site goes to I with probability α.

If we run this algorithm with netlogo or matlabl we will see that for values β, α� 1 that
this system has a critical phase transition as expected, for

α > β

we see a persistent endemic concentration of infecteds and otherwise the disease dies out.
This is not a surprise.

5.1.1. SIR Dynamics

A slight variation of the above model consideres three different states for individuals to
be in, suscptible, infected and recovered and the following 2 reactions

S + I
α−→ 2I

I
β−→ R

In this case, as we discussed earlier the dynamical system that describes this is given by

ẋ = −αxy
ẏ = αxy − βy

In phase space the dynamics looks like this:
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IF we start with y(0) = y0 � 1 and x(0) = 1− y0 then if α > β a large epidemic will
occur. Otherwise the initially small fraction of infected will die out. Let’s see how this
looks in a random lattice system:

We see that if we vay the ratio α/β we can determine the overall fraction of the
number of infecteds after an epidemic. We also see that if we approach a critical value,
this number drops off sharply. It is, however, more challending to determine the exact
value when this happen. Again, this is not so interesting as such because all that changes
is the overall magnitude of the epidemic.

5.1.2. SIRS dynamics

Now let’s be a bit more fancy and look at a mixture of the SIS and the SIR model called
the SIRS model. This is a model for diseases in which infected attain immunity but then
after sometime become susceptible again, so we have three reactions

S + I
α−→ 2I

I
β−→ R

R
γ−→ S

If we were to model this with regular ODEs we’d have

ẋ = −αxy + γz

ẏ = αxy − βy
ż = βy − γz

and with
1 = x+ y + z

we are able to reduce to a 2d system

ẋ = −αxy + γ(1− x− y)

ẏ = αxy − βy

We can, as above, see that this system has a fixed point

x = β/α and y =
γ(1− β/α)

γ + β
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which is only meaningful, if again β < α. If we do a linear stability analysis of this fixed
point, we will find that this is a stable spiral, so the system oscillates into its stable state.

But what does this look like when we look at it as a random lattice system? We see
that also here we observe a critical transition if we change the ratio of β/α. However, we
can see that the system can exhibit an interesting behavior as we get repetitive waves
that go through the system. This is reminiscent of a phenomenon called avalanches which
appear typically as a critical system approaches the critical point. We will come back to
this phenomenon.

5.2. Spin systems

Epidemics aren’t the only systems that exhibit critical or threshold dynamics. Let’s look
at a simple dynamical systems called a spin system which is borrowed from physics but
it can be used to model social dynamics and consensus forming and opinion dynamics.
Let’s assume we have a lattice and each site has a variable

sij

which can either be −1 or 1 sometimes just denoted by a spin up or a spin down. Now
let’s look at the following simple dynamical system.
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5.2.1. The random spin system

The simplest model is of course in which each spin randomly flips its opinion everytime
it updates

si(t+ 1) = si(t)

If we have a system of N spins we can show that it will take prohibitively long for the
system to reach consensus and even then it will go back to a non-consensus state. This
is thus a stupid model. We need to incorporate interactions.

5.2.2. The Voter Model

This model assume that at each step a spin looks at one of its neighbors, randomly
chosen, and adapts its own opinion to agree with that neighbor. Let’s see what this does,
if we start with an intitial condition where we have a group of people having the same
opinion in the middle surrounded by people with the opposing opinion. If we run this
for some we we see that regions on all scales form that are in agreement and the border
is fractal shaped. Interestingly, if we run this for a long time, eventually one opinion will
prevail this is a consensus state.

This particular model has no parameters and in fact as we will see we can consider
this to be a system at a crictical point which is why fluctuations are very large. We will
see that a related model, the Ising model behaves just like that at the critical point.

5.2.3. The Multivoter Model

Let’s generalize this to a model in which we have initially a set ofM opinions on a lattice.
We could describe this system by a spin that has M different directions and each spin
aligns itself with the direction of one of the neighbors. Let’s see what happens to them as
a function of time. We observe that as time goes on, more and more opinions disappear
from the system.
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5.2.4. The peer rule

Let’s see what patterns emerge if a local patch looks at what the majority of the neigh-
borhood says. In other words, each spin computes

hi =
∑
j∈Ui

si

if hi > 0 then si(t+ 1) = 1 and if hi < 0 then si(t+ 1) = −1. Note that has no random
component. It’s a deterministic rule and we shouldn’t be surprised that it will go into
a fixed state of consensus region that have approximately the extent of the neighbor of
the coupling. So unlike the voter model, the peer model will not go into a state of global
agreement.

5.2.5. Peer rule with multiple opinions

Let’s see if something similar happens if we have multiple opinions. In this case the sum
above doesn’t work so well. Instead, let’s consider each opinion as an angle variable θ
along the entire circle. And let’s assume that each each spin when it updates an opinion,
it does so according to the average opinion in its neighborhood:
We have seen this before. Again we see that this goes into a stable cinfiguration in

which we see pinwheels, just like when we discussed oscillators and pattern-formation.
And again, this is very different from the situation which we encounter if individual spins
pick their opinion in alignment with a randomly chosen spin in its neighborhood.
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5.3. The Ising model

One of the most important conceptual models in the context of social influence is the
Ising Model. In this model, we assume that each node i in a network can be in one of
two states

si =

{
1

−1

These two states can represent two opposing political opinions. Now let’s assume a
network adjacency matrix quantifies the channels of interactions, Aij = 1 means that
nodes i and j can interact and according to the interaction change their state

si(t+ 1)→ −si(t)

based on their neighborhood. Let’s assume that for each node, it is benefitial to adopt
the opinion of its neighbors. Let’s look at a pair si and sj and the quantity

hij = −1

2
siAijsj .

Obviously, if these nodes are uncoupled this quantity is zero. If Aij = 1 then

hij =

{
−1 if si = sj

1 if si = −sj

Thus, if aligning si with sj is benefitial, a negative hij is benefitial. Of course, node i is
connected to many neighbors in general, and flipping it will align it with some and not
others. But we can compute the net alignment by

hi = −1

2
si
∑
j

Aijsj

We can rewrite this as
hi = −1

2
(k+ − k−)
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where k+ is the number of i’s neighbors with si = sj and k− with sj = −si. Thus flipping
i will induce a change in hi of magnitude

∆hi = −1

2
(k− − k+) +

1

2
(k+ − k−) = −(k− − k+)

Thus, if
k− > k+

it is benefitial for i to switch because it lowers the overall agreement with i’s neighbor-
hood. The overall agreement in the entire network can be computed by

H = −1

2

∑
ij

siAijsj = −1

2
sTAs

In physics this is the energy of a spin system that can model the behavior of magnetic
spins. Clearly the lowest possible “energy” is when all spins are alighned in which case

H = −1

2

∑
ij

Aij = −L

where L is the number of links in the system.
We can now simulate this model on a computer by the following algorithm:

1. Pick a node at random

2. compute the change in “agreement” of i were to change it’s state ∆hi

a) if ∆hi ≤ 0 flip the spin

b) if ∆hi > 0 do not flip the spin

3. go back to 2.

This process will eventually go into the state that corresponds to full agreement in the
set of nodes. How can we measure this? Simply by

M =
1

N

∑
i

si

so that M = ±1 if everyone agrees, and if the spins are random then M ≈ 0. This model
is not so interesting as such but becomes interesting in the following way:
Let’s assume that each node has a probability to flip it’s state, even if

∆hi > 0

This is equivalent to going with the minority opinion. So we can set the system up

p(si → −si) =

{
1 if ∆hi ≤ 0

qi if ∆hi > 0

94



and we can chose
qi = exp(−∆hi/T )

in which T > 0 is a parameter. If T → 0 then qi = 0 which is the case described above.
If T � ∆hi then qi ≈ 1 which means that I flip the spin with probability 1 as well. The
question is, how does the overall opinion in the population look like as a function of the
parameter T

M(T ) =?

This depends very much on the adjacency matrix A. In a regular two dimensional grid,
the system exhibits a second order phase transition, for

T > Tc

we find
M ≈ 0

but for T < Tc
|M | > 0

The bottom line is that if the “noise” in the system is sufficiently large, then no consen-
sus will form in a bi-modal opinion scenario, if random fluctations decrease then suddenly
the system will go into one of the global consensus states.

5.4. Percolation on lattices

Another important class of systems in critical phenomena are percolation phenomena.
The idea is the following. Given a medium that is disordered, in the simplest scenario
consisting of “holes” and “grains”, what is the critical concentration of holes p such that
a liquid can percolate through the medium. This turns out to be a non-trivial question
as we will see later. If we program this scenario in netlogo we see that the critical
concentration for a liquid to percolate down to the bottom of the system is around
pc = 0.64. In the simulation below, at each step a “water” pixel will flow to a pixel
below or sideways if that pixel is a hole. Obviously if p = 0 then water cannot go
through, because everything is solid. if on the other hand p = 1 water will flow because
it essentially falls through empty space.
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these frames are snapshots are various times for p = 0.73, 0.65, 0.61 ans 0.59. The last
frame came to a halt after some time.

5.4.1. Forrest Fire

This is very much related to the idea of forrest fires which can be modelled using per-
colation theory. Here, we have a concentration of vegetation, for instance patches that
contain trees and patches that do not. A forrest fire can move accross the entire plane if
the concentration of trees is sufficiently large. Here als we find that the critical concen-
tration of trees is aroung

pc = 0.65

It is important to know that the behavior below and above the critical point is macro-
scopically different. If p > pc then the fire (or the percolating liquid) will pass through
the entire system so the amount of vegetation in the forest fire model that is affected
is of the order of the systemsize. If on the other hand p < pc only a tiny fraction (on
average) is affected because the fire dies out. This is very much like the behavior we
observed in the epidemic models where we also observed thresholds. Here the threshold
is the concentration of patches that support the spreading phenomenon.

5.4.2. Site percolation

The systems above are so called site-percolation systems, where only a fraction p of
possible sites exists. And in these systems we try to determing the critical fraction of
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sites that must exist for percolation to occur. The actualy critical threshold for site
percolation is given by

0.592746

which has been determined nuermically. To the isntructors knowledge the actual critical
value is unknown on the square lattice.

5.4.3. Bond percolation

There’s another way to think about this. What if the physical process actually occurs
along the bonds in a lattice, which may be the intuitive way to think of a liquid running
through the system process. In this case we may ask, what is the fraction of links that
are required to exist in the system such that it percolates. For the square lattice it’s
straighforward to compute this

pc = 1/2

in other words as long as every lattice site has more than two links/bonds we are find.

5.4.4. Other Lattices

Sometimes, the physical situation requires to think of the sytem using other geometries,
e.g. triangular lattices or honeycomb lattices. Sometimes in those other lattices it is
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easier to compute the percolation threshold. For example the site percolation threshold
in a triangular lattice is

pc = 1/2

which means at least half of all possible sites have to exist for the system to perco-
late. However, the link percolation threshold is much more complicated to compute in a
triangular lattice and is given by

pc = 0.347296.

5.5. Networks

The idea of percolation is a very important concept in network science where regular
lattices are replaced by random or in general more complex connectivity between sites.
A network is just a collection of N nodes and L links. The adjacency matrix A tells
us which two nodes are connected, so for nodes i and j we say Aij = 1 if a link exists
between i, j. The maximum number of links in such a network is given by

Lmax =
N(N − 1)

2

The maximum degree (number of connections to other nodes) of a node is kmax = N −1.
In general the degree of a node is given by

ki =
∑
j

Aij

and the mean degree across the network is

〈k〉 =
1

N

∑
i,j

Aij =
2L

N
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5.5.1. ER Networks

The simplest network is one in which we say that each one of the possible N(N − 1)/2
links exists with a probability p. So the expected number of links in a network is

〈L〉 = pLmax = p
N(N − 1)

2

The expected degree is
〈k〉 = p(N − 1).

The question is: What does the network look like as we decrease p from 1 to 0. We know
that everything is connected for p = 1 and we know that everything is disconnected if
p = 0. So it will make sense to observe as a function o p the number of components in
such a network.

It turns out that here we have another critical phenomenon, which means that we can
see a critical value pcsuch that if p > pc the almost everything in the network is connected
and if p < pc the network falls appart into many many small disconnected components.
It’s interesting to observe the transition though. The way this network disintegrates is
that little pieces get disconnected from a Giant component that contains almost all the
nodes. It’s not like the system falls appart continuously.
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One can use a little network theory to show that a network falls appart if〈
k2
〉

〈k〉
=< 1

We can derive the degree distribution in an ER network and it is given by a binomial
distribution

P (k) =

(
N − 1
k

)
pk(1− p)N−1−k

so the above inequality becomes

1 + (N − 2)p < 1

so
p <

2

N − 2

which we can write as
〈k〉

N − 1
<

2

N − 2

so if
〈k〉 < 2

which makes sense, every node has to be connected to at least to other nodes for the
giant cluster to connect everywhere. This also means that we have

L ≈ N.

5.5.2. Spreading processes through networks

This is some very important information if we want to mitigate the spread of a disease
throughout a network. Let’s assume that we have a network with a degree

〈k〉 > 2
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Then a key question then is what fraction Q of links need to be removed in order go
below the critical value kc = 2(

(1−Q) 〈k〉 = 2

1−Q = 2/ 〈k〉

Q = 1− 2

〈k〉
So for instance if 〈k〉 = 5 then

Q = 60%
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6. Growth and Aggregation Processes

A number of processes in nature are transient in the sense that a pattern or a structure
changes by growing without losing some of its characteristic statistical features. In fact
the appearance of some structure are driven by an underlying growth process. In the
intriduction we discussed that e.g. christals grow, trees grow and a bunch of other things.
There are many processes the rely on the mechanism of aggregation which means that a
structure grows by outside things permanently attaching to it. Christals and snowflakes
are a good example of this or systems driven by precipitation. Other structures grow
from the inside by sprouting substructures. Trees and many biological systems are of
this type.

6.1. Aggregation processes

The most basic but also already quite interesting aggregation process is called diffusion
limited aggregation. It works as follows. We start with a seed of a structure of small
volume or area. Then we assume that this seed is exposed to a “bath” of particles that
perform random walks. Say in two dimensions. The clue is now, that we assume that
whenever such a particle gets sufficiently close to the seed structure that it attaches and
add a little area or volume to the structure on the surface. If we have an infinite supply
of particles and if the density is small enough that they don’t interact (except for with
the growing structure, the key question is what is that structure going to look like. IF
we simuate this with netlogo we see something interesting emerge

We could suscpect that this pattern would depend much on say the size and shape of
the diffusing particles and for example the diffusion coefficient but it turns out that the
fractal like shape is very generic and robust against chances in parameters. Sometimes
the geometry can dictate the overall geometry of the structure. Here’s an example if we
start injecting particles into a system and the initial structure is a line:
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6.1.1. attractive aggregation

The key mechanism behind these structures is that the attachment process introduces a
memory in the system in the sense that after an attachment potential paths are blocked
which is why these gaps in between the branches emerge. The randomness of the moving
particles is actually not necessary for this as the following example illustrates. If we seed
the system again with a smal structure in the center of the system around the origin
and randomly start particles at a radius R and let them move along straight lines to the
origin we may expect that a disk will emerge. But the diffusing particles have a finite
size and if their initial placement is random along the circle of radius R the structure
that emerges is more similar to the above than to a filled disk:

6.1.1.1. Attractive aggregation with noise

We can carefully compare the relative impact of noise and attractive motion of the
particles by modelling the motion of the particles by a langevin equation

dX = −γXdt+ σdW

where the first terms makes the particles relax to the origin and the σ is the noise in the
system. Here are two images, on the left one without noise and on the right with finite
noise:

If we inspect these figures carefully then we see that the one on the right is less dense.
Which is interesting because one could expect that diffusing particles have a higher
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likelihood of going into the non occupied spaces. But this is not the case. Of course we
need a way to quantify this, we will do this in a minute.

6.1.2. General dynamics and aggregation

We can generalize the system above of course to model aggregation of particles that obey
general dynamical equations

dX = −f(X)dt+ σdW

where we have a determinstic part and noise. Let’s look at this example

dx = −γxdt− δydt+ σdW1

dx = −γydt+ δxdt+ σdW2

without the noise and γ, δ > 0 the particles will spiral towards the origin. Depending on
the ration of δ/γ we see that the spiraling motion of the aggregating particles leaves a
footprint on the emergent structure. The image on the left has no noise, the one on the
right finite noise

And again we see that if noise is present then the structure is sparser. How can we
measure this?

6.1.3. Fractal Dimension

The concept of fractal dimension helps us here. There are different ways of defining a
fractal dimension. We will be using the concept introduced by Haussdorff. Let’s start
with the idea or ordinary dimension. Let’s think about two a closed region embedded in
a space. For instance some sort of membrane in three dimensions.
We know that the boundary of the membrane is a line and has dimension 1. The

surface of the membrane has dimension 2. But how can we figure this out? Let’s do a
common sense approach. Let start with a bunch of beads or radius ∆x. Now let’s cover
the contour with beads such that they align along and cover the entire contour. Now
let’s count them and say we’ve gotN(∆x) beads. Now if we decrease the radius of the
beads we or course will have more beads to align along the contour. In face if we half
the radius ∆x we have to double the number of beads, so

N(∆x) ∼ ∆x−1.
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Now let’s assume that we want to cover the membrane with beads and for a given ∆x
we find we need NM (∆x) beads. If we decrese the radius say by a factor of 2 we need of
course 4 times as many beads, in fact

Nm(∆x) ∼ ∆x−2

In fact for a D dimensional object embedded in some higher-dimensional space we need

N(∆x) ∼ ∆x−D

beads. The idea is now to define the dimension of an object as

D = − lim
∆x→0

logN(∆x)

∆x

For smooth lines or surfaces or volumes this is straighforward. But what happens in the
above DLA examples? We can do this experiment in netlogo actually and measure D
by chanding ∆x and measure N(∆x). We know that the DLA structures have to have
a dimension smaller or equal to 2 becuase they exist in the plane. But when we do the
measurement we find that

1 < D < 2

so these objects have a fractal dimension. This example on the left e.g. has D = 1.3626
and the one in the middle has D = 1.41 the sparse one on the right has D = 1.208.

6.2. Cellular Automata

Let’s now look at a particular subclass of systems where the opposite dynamics occurs.
We essentially start with a seed but this seed can spawn new children and also, depending
on it’s interaction die. Let’s first thing of a one dimensional system in which we have
lattice site that can be occupied or not occupied. So the state of a lattice site is either 0
or 1.

6.2.1. Example: Competion Coorperation

Let’s assume that

1. a site that is 0 remains zero if surrounded by two zeros. this means that nothing
come from nothing.
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2. It a site is 0 and but we’ve got one neighbor that is 1 the next state is 1, so we
interpret this as the 1 invading into the vacant site

3. If the site is 0 and both neighbors are 1 they compete for the vacant site and will
not occupy it..

4. If the site is occupied and has only one occupied neighbor the site will remain
occupied, e.g. by cooperation

5. If on the other hand the site is occupied and has two empty neighbors the occupied
site dies.

6. If the site is occupied and has occupied neighbors the site dies, too.

We can write is in table form, where the first row is the state around the middle referemce
site and the bottom row it’s state in the next iteration.

111 110 101 100 011 010 001 000
0 1 0 1 1 0 1 0

We can easily run this in netlogo. The pattern that emerges depends very much on
the intitial condition. Below are the results for a system that starts out with a single
occupied site in the top pixel row and time evolves towars the bottom. The right figure
is the same with an initial condition that is randomly assigning occupation to pixels in
the top row.
We have seen the structure before, it’s the Sierpiensky gasket.

Let’s now modify the dyanmics a little bit and assume the following rule table

111 110 101 100 011 010 001 000
0 1 1 0 1 0 0 1

How do we interpret this? Well, this means that on empty sites with no occupied
neighbors in site new occupation will occur. This can also happen if one of the neighbors
is occupied. but not if only one is occupied and not if the environment is too overcrowded.
The pattern generated by this dynamics looks a bit different.
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Let’s try another system

111 110 101 100 011 010 001 000
1 0 0 1 0 1 1 0

and the pattern looks like this:

6.2.2. Elementary cellular automata

The table notation above introduces a systematic way of defining particular rule-sets.
Note that each patch and its 2 neighbors can have 23 = 8 different configurations. And
the rules are defined by mapping these 8 configurations to the next state of the center
patch. If we arrange the inputs as in the table above, the result is a binary string, e.g.
in the last example

s = 10010110

How many different such strings exist, i.e. how many rules can we have at most? That
is

2(23) = 28 = 256

and we can count them by transforming the above binary sequence into a decimal number
the above is

rule = 1× 27 + 0× 26 + 0× 25 + 1× 24 + 0× 23 + 1× 22 + 1× 21 + 0× 20

= 128 + 16 + 4 + 2 = 150

The other above are rules are
R = 90

and
R = 105

6.2.2.1. Example R = 110

Now let’s pick a rule number and write down the table for it

111 110 101 100 011 010 001 000
0 1 1 0 1 1 1 0
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This is rule 110, a very famous rule. Let’s look at the pattern. This pattern is non
repetitive, even if we start with a single occupied site. Different from the other patterns:

6.2.3. Stochastic Cellular automata

It’s of course straightforward to generalize the above to a system in which we specify the
dynamics by a table

111 110 101 100 011 010 001 000
p7 p6 p5 p4 p3 p2 p1 p0

in which the the states are no longer deterministic but probabilities that given the
three patch state, the next state will be occupied. For example if we look at the system

111 110 101 100 011 010 001 000
0 0.25 0 0.5 0.25 1 0.5 0

we see a structure like this:

6.2.4. The game of life.

The most famous cellular automaton is the game of life. This automaton evolves in
two dimensions and is to resemble or model some of the basic mechanism on life: over-
crowding, reproduction, competition etc. The rules are very simple. A lattice site can
be occupied s = 1 or empty, s = 0. Every patch updates its state in parallel and syn-
chronous with all other patches aacording to the following basic rules that can change
the state

1. s = 0 → s = 1: only if exactly three neighbors have s = 1

2. s = 1 → s = 0: if there are less than 2 neighbors alive (under-population) and
if more than 3 are alive (over population)
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This means that for instance if for instance a live cell has 2 or three neighbors it
remains alive. An empty cell with anything but 3 neighbors remains empty. This simple
automaton has an amazingly rich intrinsic potential for pattern generation as we can
explore using netlogo. One of the key feature of this simple rule set is that it can

1. Produce complex dynamic patterns

2. Produce oscillatory behavior

3. Evolve subsystems that reproduce copies

4. be designed to mimic life

The best way to explore the power of the game of life is using the netlogo program that
comes along with these notes.

6.3. Lindenmeyer system (L-systems)

One of the most famous approaches to modelling natural patterns, in particular patterns
that grow are Lindenmeyer systems that we have briefly discussed in the introduction.
Formally Lindenmeyer systems are an abstract set of

1. Variables

2. Constants

3. Rules

4. plus one initial condition

At each step, in a Lindenmeyer system, the rules inform how to replace variables with
new states. The best way to understand this is by looking at an example:

6.3.1. A simple L-System

Let’s say we have variables X and Y and a constant denoted by the symbol α. Let’s
denote the state of the L-system by Sn after n iterations and an initial condition

S0 = X

Let’s now specify the rules

X → Y a

Y → aX
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Using this we can compute

S1 = Y a

S2 = aXa

S3 = aY aa

etc. That’s all. The interesting aspect of a Lindenmeyer system comes, if we attach a
meaning to the constants and the variables. Let’s look at another example:

6.3.2. The Sierpinsky gasket, again

Let’s say we have two variables X and Y and constant α and β, the initial condition is

S0 = X

and the rules are

X → Y aXaY

Y → XbY bX

Let’s write down a few iterations

S1 = Y aXaY

S2 = XbY bXaY aXaY bXbY bX

S3 = ....

Now let’s see what structure this can describe if we associate geometric structures to it.
Let’s assume that

X,Y : draw a line of length 1/2n

and
a, b : turn left/right 60 deg. respectively

Then we get the following iterations:

We see what emerges is the Sierpinsky triangle. We also saw this as a result of rule 90
in the cellular automaton.
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6.3.2.1. Fractal dimension

Looking at this self-similar structure as a L-system allows us to directy compute the
fractal dimension of this structure. Drawing more and more shorter and shorter lines
means that we need to look at how the number of lines increases with n and comparing
to the length of the individual segments. So the number or lines is

N(n) = 3n

Their length decreases with

∆x =

(
1

2

)n
= 2−n

So the “normal” length

N∆x =

(
3

2

)n
is divergent. How we do something similar to what we did in the DLA fractals We would
like to derive how the N scales with ∆x so

N ∼ ∆x−D

We have
− log ∆x

log 2
= n

So
N(∆x) = 3

− log ∆x
log 2 = ∆x−D

where
D = log 3/ log 2 = 1.5849 > 1

so the Haussdorf dimension of the Sierpiensky triangle is this.

6.3.3. The Dragon curve

Here’s another one quite similar. Again we’ve got variables X and Y and constants a, b,
the initial condition S0 = X but this time the rules

X → XaY

Y → XbY

which generates the sequence

S1 = XaY

S2 = XaY aXbY

S3 = XaY aXbY aXaY bXbY

Now we interpret X,Y as “draw line” of length 1/
√

2
n and a, b turn at a right angle left

and right respectively. This is what it looks like
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and after many iterations we get what is known as the dragon curve. What’s the
dimension of this guy? At each step we double the number of lines so

N(n) = 2n

The lines decrease by
∆x ∼ 2−n/2

so
n = −2 log ∆x/ log 2

so
N(∆x) = 2−2 log ∆x/ log 2 = ∆x−2

Interesting, the fractal dimension of this curve is 2 which means this guy is space filling.

6.3.4. The Koch Snowflake

Let’s look at this one. This time only one variable and one constant

X → XaXaaaXaX

and an intial state
S0 = XaaXaaX

Now we interpret X as draw a line of length 3−n and a turn left 60 degrees. So S0 is a
triangle.

The rule means that each line is preplaced by a structure like this
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Again, we would like to know the fractal dimension. we have

N ∼ 4n

and
∆x ∼

(
1

3

)n
so

N(∆x) ∼ 4− log ∆x/ log 3 = ∆x− log 4/ log 3

so
D =

log 4

log 3
= 1.26185

6.3.5. Trees and Branching

An important aspect of self-similar structures are branching events, in particular in plants
this is observed. In L-systems this is easily done. Let’s look at this system, Let’s assume
we have two variables L and B where L means leaf and B means branch. As a tree
grows each leaf is replaced by a branch from which two leafs grow at 2 different angles α
and β relative to the original leaf. An stems grow. We start with one leaf, so the initial
condition is

S0 = L

One rule is to make branches double in size so

B → BB

Now the more complicated rule

L→ B((αL)βL)
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We have used here another symbol, the paranthesis. This essentially means that ( mem-
orizes the current position and ) goes back to it. So this particular rule has iterations

S1 = B((αL)βL)

= BB((αB((αL)βL)βB((αL)βL))

Now this can become very complex, but a computer can read this very well.

6.3.5.1. A more complex tree

Here’s another example that follows similar lines of thinking. We start with a leaf

S0 = L

and we have one rule
L→ δB(((αL)βL)γL)

This rule replaces each leaf with a branch and three leafs. The additional constant δ
could be interpreted has replacing each leaf with a branch that is slightly shorted and
the other parameters α, β, γ could encode for an angle and the length of the sprouting
leaf. With this one can generate different types of morphologies.
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7. Collective motion.

7.1. The Viszek Model

Recall the following system that we discussed in critical phenomena. We assumed that
we had a lattice of spins. We discussed one system in which each spin had an angle
variable

θi(t)

And we said we can update the spins according to

θi(t+ ∆t) = 〈θi(t)〉

so each theta set to the average orientation of its neighbors. This generated the typical
pinwheel patterns:
We can modify this slightly and at each iteration step we add a little bit of noise

θi(t+ ∆t) = 〈θi(t)〉+ ξ

where ξ is a random number chose in some range [−η, η]. What we observe is the following
a noise version of the above system which is not suprising.
This is the basis for the simplest model for collective motion. Imagine that the patches

are now turtles that can move. So we have a set of turtles labeled i and each turtle has
a position xi(t) and a velocity vi(t). Imagine that all turtles are moving freely so that

xi(t+ ∆t) = xi(t) + vi(t)∆t

This means that all turtles are moving in the direction

ni =
vi(t)

vi

where vi is turtle i’s speed. The velocity can be decomposed into the speed and the
heading

vi(t) = vi(t)

(
cos θi(t)
sin θi(t)

)
We now assume that the speed of the turtles does not change

vi(t) = v0 = const.

The only way that the velocity changes is by changing the headings. We assume that

θi(t+ ∆t) = 〈θ(t)〉R
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where
〈θ(t)〉R

is the average heading of turtles in the neighborhood of turtle i. If we start in a finite
area with periodic boundary conditions we see that this system evolves into a state where
every turtle will eventually move into one direction. This is not so interesting. what if
we modify the system to

xi(t+ ∆t) = xi(t) + vi(t)∆t

θi(t+ ∆t) = 〈θ(t)〉R + ξ

where ξ ∈ [−η, η]. This system has three parameters, the overall velocity v0 the noise η
and the density of turtles ρ = N/L2. We can now monitor the behavior of the collective
as a function of these parameters. The way we quantify this behavior is by looking at
the quantity

φ =
1

Nv0

∣∣∣∣∣∑
i

vi(t)

∣∣∣∣∣
if all the velocities are alligned we have φ = 1 if they scatter then φ ≈ 0. For fixed ρ and
fixed v0 we see that there’s sharpt transition between ordered swarm like behavior and
the disordered state.. The same happens for fixed noise and increasing the density.
In fact this model has a second order phase transition which we measure by the order

parameter φ..

7.1.1. Variable speed viszek model

The above model has been varied in a number of ways to model specific mechanisms
that may play a role in flocking behavior. In one varient the speed also changes as a
function of the consensus of the neighborhood of a turtle. Let’s say we have a local order
parameter

φi =
1

Miv0

∣∣∣∣∣∣
∑
j∈U(i)

vj(t)

∣∣∣∣∣∣
and each turtle measures how aligned its neighbors are and chooses a speed accordinly,
so

vi(t+ ∆t) = v0φ
γ
i

where γ is a new parameter. This means, the more aligned the neighbors, the higher the
speed. What does this look like? This introduces a shearing in the stream of turtles and
a greater flexibility of the entire swarm.

7.1.2. The ego and the group

Quite often an additional parameter is introduced to quantify the impact of the direction
of the reference turtle and the average of the environment. In this case the update rul
for the angle is

θi(t+ ∆t) = αθi(t) + (1− α) 〈θ(t)〉R + ξ
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